1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/audio/mac/audio_output_mac.h"
#include <CoreServices/CoreServices.h>
#include "base/basictypes.h"
#include "base/debug/trace_event.h"
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "media/audio/audio_util.h"
#include "media/audio/mac/audio_manager_mac.h"
// A custom data structure to store information an AudioQueue buffer.
struct AudioQueueUserData {
AudioQueueUserData() : empty_buffer(false) {}
bool empty_buffer;
};
// Overview of operation:
// 1) An object of PCMQueueOutAudioOutputStream is created by the AudioManager
// factory: audio_man->MakeAudioStream(). This just fills some structure.
// 2) Next some thread will call Open(), at that point the underliying OS
// queue is created and the audio buffers allocated.
// 3) Then some thread will call Start(source) At this point the source will be
// called to fill the initial buffers in the context of that same thread.
// Then the OS queue is started which will create its own thread which
// periodically will call the source for more data as buffers are being
// consumed.
// 4) At some point some thread will call Stop(), which we handle by directly
// stoping the OS queue.
// 5) One more callback to the source could be delivered in in the context of
// the queue's own thread. Data, if any will be discared.
// 6) The same thread that called stop will call Close() where we cleanup
// and notifiy the audio manager, which likley will destroy this object.
#if !defined(MAC_OS_X_VERSION_10_6) || \
MAC_OS_X_VERSION_MAX_ALLOWED < MAC_OS_X_VERSION_10_6
enum {
kAudioQueueErr_EnqueueDuringReset = -66632
};
#endif
PCMQueueOutAudioOutputStream::PCMQueueOutAudioOutputStream(
AudioManagerMac* manager, const AudioParameters& params)
: audio_queue_(NULL),
source_(NULL),
manager_(manager),
packet_size_(params.GetBytesPerBuffer()),
silence_bytes_(0),
volume_(1),
pending_bytes_(0),
num_source_channels_(params.channels()),
source_layout_(params.channel_layout()),
num_core_channels_(0),
should_swizzle_(false),
should_down_mix_(false) {
// We must have a manager.
DCHECK(manager_);
// A frame is one sample across all channels. In interleaved audio the per
// frame fields identify the set of n |channels|. In uncompressed audio, a
// packet is always one frame.
format_.mSampleRate = params.sample_rate();
format_.mFormatID = kAudioFormatLinearPCM;
format_.mFormatFlags = kLinearPCMFormatFlagIsPacked;
format_.mBitsPerChannel = params.bits_per_sample();
format_.mChannelsPerFrame = params.channels();
format_.mFramesPerPacket = 1;
format_.mBytesPerPacket = (format_.mBitsPerChannel * params.channels()) / 8;
format_.mBytesPerFrame = format_.mBytesPerPacket;
format_.mReserved = 0;
memset(buffer_, 0, sizeof(buffer_));
memset(core_channel_orderings_, 0, sizeof(core_channel_orderings_));
memset(channel_remap_, 0, sizeof(channel_remap_));
if (params.bits_per_sample() > 8) {
format_.mFormatFlags |= kLinearPCMFormatFlagIsSignedInteger;
}
// Silence buffer has a duration of 6ms to simulate the behavior of Windows.
// This value is choosen by experiments and macs cannot keep up with
// anything less than 6ms.
silence_bytes_ = format_.mBytesPerFrame * params.sample_rate() * 6 / 1000;
}
PCMQueueOutAudioOutputStream::~PCMQueueOutAudioOutputStream() {
}
void PCMQueueOutAudioOutputStream::HandleError(OSStatus err) {
// source_ can be set to NULL from another thread. We need to cache its
// pointer while we operate here. Note that does not mean that the source
// has been destroyed.
AudioSourceCallback* source = GetSource();
if (source)
source->OnError(this, static_cast<int>(err));
NOTREACHED() << "error " << GetMacOSStatusErrorString(err)
<< " (" << err << ")";
}
bool PCMQueueOutAudioOutputStream::Open() {
// Get the default device id.
AudioObjectID device_id = 0;
AudioObjectPropertyAddress property_address = {
kAudioHardwarePropertyDefaultOutputDevice,
kAudioObjectPropertyScopeGlobal,
kAudioObjectPropertyElementMaster
};
UInt32 device_id_size = sizeof(device_id);
OSStatus err = AudioObjectGetPropertyData(kAudioObjectSystemObject,
&property_address, 0, NULL,
&device_id_size, &device_id);
if (err != noErr) {
HandleError(err);
return false;
}
// Get the size of the channel layout.
UInt32 core_layout_size;
// TODO(annacc): AudioDeviceGetPropertyInfo() is deprecated, but its
// replacement, AudioObjectGetPropertyDataSize(), doesn't work yet with
// kAudioDevicePropertyPreferredChannelLayout.
err = AudioDeviceGetPropertyInfo(device_id, 0, false,
kAudioDevicePropertyPreferredChannelLayout,
&core_layout_size, NULL);
if (err != noErr) {
HandleError(err);
return false;
}
// Get the device's channel layout. This layout may vary in sized based on
// the number of channels. Use |core_layout_size| to allocate memory.
scoped_ptr_malloc<AudioChannelLayout> core_channel_layout;
core_channel_layout.reset(
reinterpret_cast<AudioChannelLayout*>(malloc(core_layout_size)));
memset(core_channel_layout.get(), 0, core_layout_size);
// TODO(annacc): AudioDeviceGetProperty() is deprecated, but its
// replacement, AudioObjectGetPropertyData(), doesn't work yet with
// kAudioDevicePropertyPreferredChannelLayout.
err = AudioDeviceGetProperty(device_id, 0, false,
kAudioDevicePropertyPreferredChannelLayout,
&core_layout_size, core_channel_layout.get());
if (err != noErr) {
HandleError(err);
return false;
}
num_core_channels_ =
static_cast<int>(core_channel_layout->mNumberChannelDescriptions);
if (num_core_channels_ == 2 &&
ChannelLayoutToChannelCount(source_layout_) > 2) {
should_down_mix_ = true;
format_.mChannelsPerFrame = num_core_channels_;
format_.mBytesPerFrame = (format_.mBitsPerChannel >> 3) *
format_.mChannelsPerFrame;
format_.mBytesPerPacket = format_.mBytesPerFrame * format_.mFramesPerPacket;
} else {
should_down_mix_ = false;
}
// Create the actual queue object and let the OS use its own thread to
// run its CFRunLoop.
err = AudioQueueNewOutput(&format_, RenderCallback, this, NULL,
kCFRunLoopCommonModes, 0, &audio_queue_);
if (err != noErr) {
HandleError(err);
return false;
}
// Allocate the hardware-managed buffers.
for (uint32 ix = 0; ix != kNumBuffers; ++ix) {
err = AudioQueueAllocateBuffer(audio_queue_, packet_size_, &buffer_[ix]);
if (err != noErr) {
HandleError(err);
return false;
}
// Allocate memory for user data.
buffer_[ix]->mUserData = new AudioQueueUserData();
}
// Set initial volume here.
err = AudioQueueSetParameter(audio_queue_, kAudioQueueParam_Volume, 1.0);
if (err != noErr) {
HandleError(err);
return false;
}
// Capture channel layout in a format we can use.
for (int i = 0; i < CHANNELS_MAX; ++i)
core_channel_orderings_[i] = kEmptyChannel;
bool all_channels_unknown = true;
for (int i = 0; i < num_core_channels_; ++i) {
AudioChannelLabel label =
core_channel_layout->mChannelDescriptions[i].mChannelLabel;
if (label == kAudioChannelLabel_Unknown) {
continue;
}
all_channels_unknown = false;
switch (label) {
case kAudioChannelLabel_Left:
core_channel_orderings_[LEFT] = i;
channel_remap_[i] = kChannelOrderings[source_layout_][LEFT];
break;
case kAudioChannelLabel_Right:
core_channel_orderings_[RIGHT] = i;
channel_remap_[i] = kChannelOrderings[source_layout_][RIGHT];
break;
case kAudioChannelLabel_Center:
core_channel_orderings_[CENTER] = i;
channel_remap_[i] = kChannelOrderings[source_layout_][CENTER];
break;
case kAudioChannelLabel_LFEScreen:
core_channel_orderings_[LFE] = i;
channel_remap_[i] = kChannelOrderings[source_layout_][LFE];
break;
case kAudioChannelLabel_LeftSurround:
core_channel_orderings_[SIDE_LEFT] = i;
channel_remap_[i] = kChannelOrderings[source_layout_][SIDE_LEFT];
break;
case kAudioChannelLabel_RightSurround:
core_channel_orderings_[SIDE_RIGHT] = i;
channel_remap_[i] = kChannelOrderings[source_layout_][SIDE_RIGHT];
break;
case kAudioChannelLabel_LeftCenter:
core_channel_orderings_[LEFT_OF_CENTER] = i;
channel_remap_[i] = kChannelOrderings[source_layout_][LEFT_OF_CENTER];
break;
case kAudioChannelLabel_RightCenter:
core_channel_orderings_[RIGHT_OF_CENTER] = i;
channel_remap_[i] = kChannelOrderings[source_layout_][RIGHT_OF_CENTER];
break;
case kAudioChannelLabel_CenterSurround:
core_channel_orderings_[BACK_CENTER] = i;
channel_remap_[i] = kChannelOrderings[source_layout_][BACK_CENTER];
break;
case kAudioChannelLabel_RearSurroundLeft:
core_channel_orderings_[BACK_LEFT] = i;
channel_remap_[i] = kChannelOrderings[source_layout_][BACK_LEFT];
break;
case kAudioChannelLabel_RearSurroundRight:
core_channel_orderings_[BACK_RIGHT] = i;
channel_remap_[i] = kChannelOrderings[source_layout_][BACK_RIGHT];
break;
default:
DLOG(WARNING) << "Channel label not supported";
channel_remap_[i] = kEmptyChannel;
break;
}
}
if (all_channels_unknown) {
return true;
}
// Check if we need to adjust the layout.
// If the device has a BACK_LEFT and no SIDE_LEFT and the source has
// a SIDE_LEFT but no BACK_LEFT, then move (and preserve the channel).
// e.g. CHANNEL_LAYOUT_5POINT1 -> CHANNEL_LAYOUT_5POINT1_BACK
CheckForAdjustedLayout(SIDE_LEFT, BACK_LEFT);
// Same for SIDE_RIGHT -> BACK_RIGHT.
CheckForAdjustedLayout(SIDE_RIGHT, BACK_RIGHT);
// Move BACK_LEFT to SIDE_LEFT.
// e.g. CHANNEL_LAYOUT_5POINT1_BACK -> CHANNEL_LAYOUT_5POINT1
CheckForAdjustedLayout(BACK_LEFT, SIDE_LEFT);
// Same for BACK_RIGHT -> SIDE_RIGHT.
CheckForAdjustedLayout(BACK_RIGHT, SIDE_RIGHT);
// Move SIDE_LEFT to LEFT_OF_CENTER.
// e.g. CHANNEL_LAYOUT_7POINT1 -> CHANNEL_LAYOUT_7POINT1_WIDE
CheckForAdjustedLayout(SIDE_LEFT, LEFT_OF_CENTER);
// Same for SIDE_RIGHT -> RIGHT_OF_CENTER.
CheckForAdjustedLayout(SIDE_RIGHT, RIGHT_OF_CENTER);
// Move LEFT_OF_CENTER to SIDE_LEFT.
// e.g. CHANNEL_LAYOUT_7POINT1_WIDE -> CHANNEL_LAYOUT_7POINT1
CheckForAdjustedLayout(LEFT_OF_CENTER, SIDE_LEFT);
// Same for RIGHT_OF_CENTER -> SIDE_RIGHT.
CheckForAdjustedLayout(RIGHT_OF_CENTER, SIDE_RIGHT);
// For MONO -> STEREO, move audio to LEFT and RIGHT if applicable.
CheckForAdjustedLayout(CENTER, LEFT);
CheckForAdjustedLayout(CENTER, RIGHT);
// Check if we will need to swizzle from source to device layout (maybe not!).
should_swizzle_ = false;
for (int i = 0; i < num_core_channels_; ++i) {
if (kChannelOrderings[source_layout_][i] != core_channel_orderings_[i]) {
should_swizzle_ = true;
break;
}
}
return true;
}
void PCMQueueOutAudioOutputStream::Close() {
// It is valid to call Close() before calling Open(), thus audio_queue_
// might be NULL.
if (audio_queue_) {
OSStatus err = 0;
for (uint32 ix = 0; ix != kNumBuffers; ++ix) {
if (buffer_[ix]) {
// Free user data.
delete static_cast<AudioQueueUserData*>(buffer_[ix]->mUserData);
// Free AudioQueue buffer.
err = AudioQueueFreeBuffer(audio_queue_, buffer_[ix]);
if (err != noErr) {
HandleError(err);
break;
}
}
}
err = AudioQueueDispose(audio_queue_, true);
if (err != noErr)
HandleError(err);
}
// Inform the audio manager that we have been closed. This can cause our
// destruction.
manager_->ReleaseOutputStream(this);
}
void PCMQueueOutAudioOutputStream::Stop() {
// We request a synchronous stop, so the next call can take some time. In
// the windows implementation we block here as well.
SetSource(NULL);
// We set the source to null to signal to the data queueing thread it can stop
// queueing data, however at most one callback might still be in flight which
// could attempt to enqueue right after the next call. Rather that trying to
// use a lock we rely on the internal Mac queue lock so the enqueue might
// succeed or might fail but it won't crash or leave the queue itself in an
// inconsistent state.
OSStatus err = AudioQueueStop(audio_queue_, true);
if (err != noErr)
HandleError(err);
}
void PCMQueueOutAudioOutputStream::SetVolume(double volume) {
if (!audio_queue_)
return;
volume_ = static_cast<float>(volume);
OSStatus err = AudioQueueSetParameter(audio_queue_,
kAudioQueueParam_Volume,
volume);
if (err != noErr) {
HandleError(err);
}
}
void PCMQueueOutAudioOutputStream::GetVolume(double* volume) {
if (!audio_queue_)
return;
*volume = volume_;
}
template<class Format>
void PCMQueueOutAudioOutputStream::SwizzleLayout(Format* b, uint32 filled) {
Format src_format[num_source_channels_];
int filled_channels = (num_core_channels_ < num_source_channels_) ?
num_core_channels_ : num_source_channels_;
for (uint32 i = 0; i < filled; i += sizeof(src_format),
b += num_source_channels_) {
// TODO(fbarchard): This could be further optimized with pshufb.
memcpy(src_format, b, sizeof(src_format));
for (int ch = 0; ch < filled_channels; ++ch) {
if (channel_remap_[ch] != kEmptyChannel &&
channel_remap_[ch] <= CHANNELS_MAX) {
b[ch] = src_format[channel_remap_[ch]];
} else {
b[ch] = 0;
}
}
}
}
bool PCMQueueOutAudioOutputStream::CheckForAdjustedLayout(
Channels input_channel,
Channels output_channel) {
if (core_channel_orderings_[output_channel] > kEmptyChannel &&
core_channel_orderings_[input_channel] == kEmptyChannel &&
kChannelOrderings[source_layout_][input_channel] > kEmptyChannel &&
kChannelOrderings[source_layout_][output_channel] == kEmptyChannel) {
channel_remap_[core_channel_orderings_[output_channel]] =
kChannelOrderings[source_layout_][input_channel];
return true;
}
return false;
}
// Note to future hackers of this function: Do not add locks to this function
// that are held through any calls made back into AudioQueue APIs, or other
// OS audio functions. This is because the OS dispatch may grab external
// locks, or possibly re-enter this function which can lead to a deadlock.
void PCMQueueOutAudioOutputStream::RenderCallback(void* p_this,
AudioQueueRef queue,
AudioQueueBufferRef buffer) {
TRACE_EVENT0("audio", "PCMQueueOutAudioOutputStream::RenderCallback");
PCMQueueOutAudioOutputStream* audio_stream =
static_cast<PCMQueueOutAudioOutputStream*>(p_this);
// Call the audio source to fill the free buffer with data. Not having a
// source means that the queue has been closed. This is not an error.
AudioSourceCallback* source = audio_stream->GetSource();
if (!source)
return;
// Adjust the number of pending bytes by subtracting the amount played.
if (!static_cast<AudioQueueUserData*>(buffer->mUserData)->empty_buffer)
audio_stream->pending_bytes_ -= buffer->mAudioDataByteSize;
uint32 capacity = buffer->mAudioDataBytesCapacity;
// TODO(sergeyu): Specify correct hardware delay for AudioBuffersState.
uint32 filled = source->OnMoreData(
audio_stream, reinterpret_cast<uint8*>(buffer->mAudioData), capacity,
AudioBuffersState(audio_stream->pending_bytes_, 0));
// In order to keep the callback running, we need to provide a positive amount
// of data to the audio queue. To simulate the behavior of Windows, we write
// a buffer of silence.
if (!filled) {
CHECK(audio_stream->silence_bytes_ <= static_cast<int>(capacity));
filled = audio_stream->silence_bytes_;
// Assume unsigned audio.
int silence_value = 128;
if (audio_stream->format_.mBitsPerChannel > 8) {
// When bits per channel is greater than 8, audio is signed.
silence_value = 0;
}
memset(buffer->mAudioData, silence_value, filled);
static_cast<AudioQueueUserData*>(buffer->mUserData)->empty_buffer = true;
} else if (filled > capacity) {
// User probably overran our buffer.
audio_stream->HandleError(0);
return;
} else {
static_cast<AudioQueueUserData*>(buffer->mUserData)->empty_buffer = false;
}
if (audio_stream->should_down_mix_) {
// Downmixes the L, R, C channels to stereo.
if (media::FoldChannels(buffer->mAudioData,
filled,
audio_stream->num_source_channels_,
audio_stream->format_.mBitsPerChannel >> 3,
audio_stream->volume_)) {
filled = filled * 2 / audio_stream->num_source_channels_;
} else {
LOG(ERROR) << "Folding failed";
}
} else if (audio_stream->should_swizzle_) {
// Handle channel order for surround sound audio.
if (audio_stream->format_.mBitsPerChannel == 8) {
audio_stream->SwizzleLayout(reinterpret_cast<uint8*>(buffer->mAudioData),
filled);
} else if (audio_stream->format_.mBitsPerChannel == 16) {
audio_stream->SwizzleLayout(reinterpret_cast<int16*>(buffer->mAudioData),
filled);
} else if (audio_stream->format_.mBitsPerChannel == 32) {
audio_stream->SwizzleLayout(reinterpret_cast<int32*>(buffer->mAudioData),
filled);
}
}
buffer->mAudioDataByteSize = filled;
// Increment bytes by amount filled into audio buffer if this is not a
// silence buffer.
if (!static_cast<AudioQueueUserData*>(buffer->mUserData)->empty_buffer)
audio_stream->pending_bytes_ += filled;
if (NULL == queue)
return;
// Queue the audio data to the audio driver.
OSStatus err = AudioQueueEnqueueBuffer(queue, buffer, 0, NULL);
if (err != noErr) {
if (err == kAudioQueueErr_EnqueueDuringReset) {
// This is the error you get if you try to enqueue a buffer and the
// queue has been closed. Not really a problem if indeed the queue
// has been closed. We recheck the value of source now to see if it has
// indeed been closed.
if (!audio_stream->GetSource())
return;
}
audio_stream->HandleError(err);
}
}
void PCMQueueOutAudioOutputStream::Start(AudioSourceCallback* callback) {
DCHECK(callback);
DLOG_IF(ERROR, !audio_queue_) << "Open() has not been called successfully";
if (!audio_queue_)
return;
OSStatus err = noErr;
SetSource(callback);
pending_bytes_ = 0;
// Ask the source to pre-fill all our buffers before playing.
for (uint32 ix = 0; ix != kNumBuffers; ++ix) {
buffer_[ix]->mAudioDataByteSize = 0;
// Caller waits for 1st packet to become available, but not for others,
// so we wait for them here.
if (ix != 0) {
AudioSourceCallback* source = GetSource();
if (source)
source->WaitTillDataReady();
}
RenderCallback(this, NULL, buffer_[ix]);
}
// Queue the buffers to the audio driver, sounds starts now.
for (uint32 ix = 0; ix != kNumBuffers; ++ix) {
err = AudioQueueEnqueueBuffer(audio_queue_, buffer_[ix], 0, NULL);
if (err != noErr) {
HandleError(err);
return;
}
}
err = AudioQueueStart(audio_queue_, NULL);
if (err != noErr) {
HandleError(err);
return;
}
}
void PCMQueueOutAudioOutputStream::SetSource(AudioSourceCallback* source) {
base::AutoLock lock(source_lock_);
source_ = source;
}
AudioOutputStream::AudioSourceCallback*
PCMQueueOutAudioOutputStream::GetSource() {
base::AutoLock lock(source_lock_);
return source_;
}
|