1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
|
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/logging.h"
#include "base/basictypes.h"
#include "base/scoped_ptr.h"
#include "base/time.h"
#include "media/audio/fake_audio_output_stream.h"
#include "media/audio/simple_sources.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace {
void GenerateRandomData(char* buffer, uint32 len) {
static bool called = false;
if (!called) {
called = true;
int seed = static_cast<int>(base::Time::Now().ToInternalValue());
srand(seed);
LOG(INFO) << "Random seed: " << seed;
}
for (uint32 i = 0; i < len; i++) {
buffer[i] = static_cast<char>(rand());
}
}
} // namespace
// To test write size smaller than read size.
TEST(SimpleSourcesTest, PushSourceSmallerWrite) {
const uint32 kDataSize = 40960;
scoped_array<char> data(new char[kDataSize]);
GenerateRandomData(data.get(), kDataSize);
// Choose two prime numbers for read and write sizes.
const uint32 kWriteSize = 283;
const uint32 kReadSize = 293;
scoped_array<char> read_data(new char[kReadSize]);
// Create a PushSource that assumes the hardware audio buffer size is always
// bigger than the write size.
PushSource push_source(kReadSize);
EXPECT_EQ(0u, push_source.UnProcessedBytes());
// Write everything into this push source.
for (uint32 i = 0; i < kDataSize; i += kWriteSize) {
uint32 size = std::min(kDataSize - i, kWriteSize);
EXPECT_TRUE(push_source.Write(data.get() + i, size));
}
EXPECT_EQ(kDataSize, push_source.UnProcessedBytes());
// Read everything from the push source.
for (uint32 i = 0; i < kDataSize; i += kReadSize) {
uint32 size = std::min(kDataSize - i , kReadSize);
EXPECT_EQ(size, push_source.OnMoreData(NULL, read_data.get(), size, 0));
EXPECT_EQ(0, memcmp(data.get() + i, read_data.get(), size));
}
EXPECT_EQ(0u, push_source.UnProcessedBytes());
push_source.OnClose(NULL);
}
// Validate that the SineWaveAudioSource writes the expected values for
// the FORMAT_16BIT_MONO. The values are carefully selected so rounding issues
// do not affect the result. We also test that AudioManager::GetLastMockBuffer
// works.
TEST(SimpleSources, SineWaveAudio16MonoTest) {
const uint32 samples = 1024;
const uint32 bytes_per_sample = 2;
const int freq = 200;
SineWaveAudioSource source(SineWaveAudioSource::FORMAT_16BIT_LINEAR_PCM, 1,
freq, AudioManager::kTelephoneSampleRate);
AudioManager* audio_man = AudioManager::GetAudioManager();
ASSERT_TRUE(NULL != audio_man);
AudioOutputStream* oas =
audio_man->MakeAudioStream(AudioManager::AUDIO_MOCK, 1,
AudioManager::kTelephoneSampleRate,
bytes_per_sample * 2);
ASSERT_TRUE(NULL != oas);
EXPECT_TRUE(oas->Open(samples * bytes_per_sample));
oas->Start(&source);
oas->Stop();
oas->Close();
ASSERT_TRUE(FakeAudioOutputStream::GetLastFakeStream());
const int16* last_buffer =
reinterpret_cast<int16*>(
FakeAudioOutputStream::GetLastFakeStream()->buffer());
ASSERT_TRUE(NULL != last_buffer);
uint32 half_period = AudioManager::kTelephoneSampleRate / (freq * 2);
// Spot test positive incursion of sine wave.
EXPECT_EQ(0, last_buffer[0]);
EXPECT_EQ(5126, last_buffer[1]);
EXPECT_TRUE(last_buffer[1] < last_buffer[2]);
EXPECT_TRUE(last_buffer[2] < last_buffer[3]);
// Spot test negative incursion of sine wave.
EXPECT_EQ(0, last_buffer[half_period]);
EXPECT_EQ(-5126, last_buffer[half_period + 1]);
EXPECT_TRUE(last_buffer[half_period + 1] > last_buffer[half_period + 2]);
EXPECT_TRUE(last_buffer[half_period + 2] > last_buffer[half_period + 3]);
}
|