1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// MSVC++ requires this to be set before any other includes to get M_PI.
#define _USE_MATH_DEFINES
#include <cmath>
#include "base/memory/scoped_ptr.h"
#include "base/memory/scoped_vector.h"
#include "base/strings/string_number_conversions.h"
#include "media/base/audio_converter.h"
#include "media/base/fake_audio_render_callback.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace media {
// Parameters which control the many input case tests.
static const int kConvertInputs = 8;
static const int kConvertCycles = 3;
// Parameters used for testing.
static const int kBitsPerChannel = 32;
static const ChannelLayout kChannelLayout = CHANNEL_LAYOUT_STEREO;
static const int kHighLatencyBufferSize = 2048;
static const int kLowLatencyBufferSize = 256;
static const int kSampleRate = 48000;
// Number of full sine wave cycles for each Render() call.
static const int kSineCycles = 4;
// Tuple of <input rate, output rate, output channel layout, epsilon>.
typedef std::tr1::tuple<int, int, ChannelLayout, double> AudioConverterTestData;
class AudioConverterTest
: public testing::TestWithParam<AudioConverterTestData> {
public:
AudioConverterTest()
: epsilon_(std::tr1::get<3>(GetParam())) {
// Create input and output parameters based on test parameters.
input_parameters_ = AudioParameters(
AudioParameters::AUDIO_PCM_LINEAR, kChannelLayout,
std::tr1::get<0>(GetParam()), kBitsPerChannel, kHighLatencyBufferSize);
output_parameters_ = AudioParameters(
AudioParameters::AUDIO_PCM_LOW_LATENCY, std::tr1::get<2>(GetParam()),
std::tr1::get<1>(GetParam()), 16, kLowLatencyBufferSize);
converter_.reset(new AudioConverter(
input_parameters_, output_parameters_, false));
audio_bus_ = AudioBus::Create(output_parameters_);
expected_audio_bus_ = AudioBus::Create(output_parameters_);
// Allocate one callback for generating expected results.
double step = kSineCycles / static_cast<double>(
output_parameters_.frames_per_buffer());
expected_callback_.reset(new FakeAudioRenderCallback(step));
}
// Creates |count| input callbacks to be used for conversion testing.
void InitializeInputs(int count) {
// Setup FakeAudioRenderCallback step to compensate for resampling.
double scale_factor = input_parameters_.sample_rate() /
static_cast<double>(output_parameters_.sample_rate());
double step = kSineCycles / (scale_factor *
static_cast<double>(output_parameters_.frames_per_buffer()));
for (int i = 0; i < count; ++i) {
fake_callbacks_.push_back(new FakeAudioRenderCallback(step));
converter_->AddInput(fake_callbacks_[i]);
}
}
// Resets all input callbacks to a pristine state.
void Reset() {
converter_->Reset();
for (size_t i = 0; i < fake_callbacks_.size(); ++i)
fake_callbacks_[i]->reset();
expected_callback_->reset();
}
// Sets the volume on all input callbacks to |volume|.
void SetVolume(float volume) {
for (size_t i = 0; i < fake_callbacks_.size(); ++i)
fake_callbacks_[i]->set_volume(volume);
}
// Validates audio data between |audio_bus_| and |expected_audio_bus_| from
// |index|..|frames| after |scale| is applied to the expected audio data.
bool ValidateAudioData(int index, int frames, float scale) {
for (int i = 0; i < audio_bus_->channels(); ++i) {
for (int j = index; j < frames; ++j) {
double error = fabs(audio_bus_->channel(i)[j] -
expected_audio_bus_->channel(i)[j] * scale);
if (error > epsilon_) {
EXPECT_NEAR(expected_audio_bus_->channel(i)[j] * scale,
audio_bus_->channel(i)[j], epsilon_)
<< " i=" << i << ", j=" << j;
return false;
}
}
}
return true;
}
// Runs a single Convert() stage, fills |expected_audio_bus_| appropriately,
// and validates equality with |audio_bus_| after |scale| is applied.
bool RenderAndValidateAudioData(float scale) {
// Render actual audio data.
converter_->Convert(audio_bus_.get());
// Render expected audio data.
expected_callback_->Render(expected_audio_bus_.get(), 0);
// Zero out unused channels in the expected AudioBus just as AudioConverter
// would during channel mixing.
for (int i = input_parameters_.channels();
i < output_parameters_.channels(); ++i) {
memset(expected_audio_bus_->channel(i), 0,
audio_bus_->frames() * sizeof(*audio_bus_->channel(i)));
}
return ValidateAudioData(0, audio_bus_->frames(), scale);
}
// Fills |audio_bus_| fully with |value|.
void FillAudioData(float value) {
for (int i = 0; i < audio_bus_->channels(); ++i) {
std::fill(audio_bus_->channel(i),
audio_bus_->channel(i) + audio_bus_->frames(), value);
}
}
// Verifies converter output with a |inputs| number of transform inputs.
void RunTest(int inputs) {
InitializeInputs(inputs);
SetVolume(0);
for (int i = 0; i < kConvertCycles; ++i)
ASSERT_TRUE(RenderAndValidateAudioData(0));
Reset();
// Set a different volume for each input and verify the results.
float total_scale = 0;
for (size_t i = 0; i < fake_callbacks_.size(); ++i) {
float volume = static_cast<float>(i) / fake_callbacks_.size();
total_scale += volume;
fake_callbacks_[i]->set_volume(volume);
}
for (int i = 0; i < kConvertCycles; ++i)
ASSERT_TRUE(RenderAndValidateAudioData(total_scale));
Reset();
// Remove every other input.
for (size_t i = 1; i < fake_callbacks_.size(); i += 2)
converter_->RemoveInput(fake_callbacks_[i]);
SetVolume(1);
float scale = inputs > 1 ? inputs / 2.0f : inputs;
for (int i = 0; i < kConvertCycles; ++i)
ASSERT_TRUE(RenderAndValidateAudioData(scale));
}
protected:
virtual ~AudioConverterTest() {}
// Converter under test.
scoped_ptr<AudioConverter> converter_;
// Input and output parameters used for AudioConverter construction.
AudioParameters input_parameters_;
AudioParameters output_parameters_;
// Destination AudioBus for AudioConverter output.
scoped_ptr<AudioBus> audio_bus_;
// AudioBus containing expected results for comparison with |audio_bus_|.
scoped_ptr<AudioBus> expected_audio_bus_;
// Vector of all input callbacks used to drive AudioConverter::Convert().
ScopedVector<FakeAudioRenderCallback> fake_callbacks_;
// Parallel input callback which generates the expected output.
scoped_ptr<FakeAudioRenderCallback> expected_callback_;
// Epsilon value with which to perform comparisons between |audio_bus_| and
// |expected_audio_bus_|.
double epsilon_;
DISALLOW_COPY_AND_ASSIGN(AudioConverterTest);
};
// Ensure the buffer delay provided by AudioConverter is accurate.
TEST(AudioConverterTest, AudioDelay) {
// Choose input and output parameters such that the transform must make
// multiple calls to fill the buffer.
AudioParameters input_parameters = AudioParameters(
AudioParameters::AUDIO_PCM_LINEAR, kChannelLayout, kSampleRate,
kBitsPerChannel, kLowLatencyBufferSize);
AudioParameters output_parameters = AudioParameters(
AudioParameters::AUDIO_PCM_LINEAR, kChannelLayout, kSampleRate * 2,
kBitsPerChannel, kHighLatencyBufferSize);
AudioConverter converter(input_parameters, output_parameters, false);
FakeAudioRenderCallback callback(0.2);
scoped_ptr<AudioBus> audio_bus = AudioBus::Create(output_parameters);
converter.AddInput(&callback);
converter.Convert(audio_bus.get());
// Calculate the expected buffer delay for given AudioParameters.
double input_sample_rate = input_parameters.sample_rate();
int fill_count =
(output_parameters.frames_per_buffer() * input_sample_rate /
output_parameters.sample_rate()) / input_parameters.frames_per_buffer();
base::TimeDelta input_frame_duration = base::TimeDelta::FromMicroseconds(
base::Time::kMicrosecondsPerSecond / input_sample_rate);
int expected_last_delay_milliseconds =
fill_count * input_parameters.frames_per_buffer() *
input_frame_duration.InMillisecondsF();
EXPECT_EQ(expected_last_delay_milliseconds,
callback.last_audio_delay_milliseconds());
}
TEST_P(AudioConverterTest, ArbitraryOutputRequestSize) {
// Resize output bus to be half of |output_parameters_|'s frames_per_buffer().
audio_bus_ = AudioBus::Create(output_parameters_.channels(),
output_parameters_.frames_per_buffer() / 2);
RunTest(1);
}
TEST_P(AudioConverterTest, NoInputs) {
FillAudioData(1.0f);
EXPECT_TRUE(RenderAndValidateAudioData(0.0f));
}
TEST_P(AudioConverterTest, OneInput) {
RunTest(1);
}
TEST_P(AudioConverterTest, ManyInputs) {
RunTest(kConvertInputs);
}
INSTANTIATE_TEST_CASE_P(
AudioConverterTest, AudioConverterTest, testing::Values(
// No resampling. No channel mixing.
std::tr1::make_tuple(44100, 44100, CHANNEL_LAYOUT_STEREO, 0.00000048),
// Upsampling. Channel upmixing.
std::tr1::make_tuple(44100, 48000, CHANNEL_LAYOUT_QUAD, 0.033),
// Downsampling. Channel downmixing.
std::tr1::make_tuple(48000, 41000, CHANNEL_LAYOUT_MONO, 0.042)));
} // namespace media
|