1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
// Copyright (c) 2008-2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Defines various types of timestamped media buffers used for transporting
// data between filters. Every buffer contains a timestamp in microseconds
// describing the relative position of the buffer within the media stream, and
// the duration in microseconds for the length of time the buffer will be
// rendered.
//
// Timestamps are derived directly from the encoded media file and are commonly
// known as the presentation timestamp (PTS). Durations are a best-guess and
// are usually derived from the sample/frame rate of the media file.
//
// Due to encoding and transmission errors, it is not guaranteed that timestamps
// arrive in a monotonically increasing order nor that the next timestamp will
// be equal to the previous timestamp plus the duration.
//
// In the ideal scenario for a 25fps movie, buffers are timestamped as followed:
//
// Buffer0 Buffer1 Buffer2 ... BufferN
// Timestamp: 0us 40000us 80000us ... (N*40000)us
// Duration*: 40000us 40000us 40000us ... 40000us
//
// *25fps = 0.04s per frame = 40000us per frame
#ifndef MEDIA_BASE_BUFFERS_H_
#define MEDIA_BASE_BUFFERS_H_
#include "base/logging.h"
#include "base/ref_counted.h"
#include "base/time.h"
namespace media {
class StreamSample : public base::RefCountedThreadSafe<StreamSample> {
public:
// Returns the timestamp of this buffer in microseconds.
base::TimeDelta GetTimestamp() const {
return timestamp_;
}
// Returns the duration of this buffer in microseconds.
base::TimeDelta GetDuration() const {
return duration_;
}
// Indicates that the sample is the last one in the stream.
bool IsEndOfStream() const {
return end_of_stream_;
}
// Indicates that this sample is discontinuous from the previous one, for
// example, following a seek.
bool IsDiscontinuous() const {
return discontinuous_;
}
// Sets the timestamp of this buffer in microseconds.
void SetTimestamp(const base::TimeDelta& timestamp) {
timestamp_ = timestamp;
}
// Sets the duration of this buffer in microseconds.
void SetDuration(const base::TimeDelta& duration) {
duration_ = duration;
}
// Sets the value returned by IsEndOfStream().
void SetEndOfStream(bool end_of_stream) {
end_of_stream_ = end_of_stream;
}
// Sets the value returned by IsDiscontinuous().
void SetDiscontinuous(bool discontinuous) {
discontinuous_ = discontinuous;
}
protected:
friend class base::RefCountedThreadSafe<StreamSample>;
StreamSample()
: end_of_stream_(false),
discontinuous_(false) {
}
virtual ~StreamSample() {}
base::TimeDelta timestamp_;
base::TimeDelta duration_;
bool end_of_stream_;
bool discontinuous_;
private:
DISALLOW_COPY_AND_ASSIGN(StreamSample);
};
class Buffer : public StreamSample {
public:
// Returns a read only pointer to the buffer data.
virtual const uint8* GetData() const = 0;
// Returns the size of valid data in bytes.
virtual size_t GetDataSize() const = 0;
};
class WritableBuffer : public Buffer {
public:
// Returns a read-write pointer to the buffer data. When this method is
// called, any pointers previously returned from this method are invalid, and
// any data previously written to the buffer is invalid. The buffer size
// is guaranteed to be at least the size of |buffer_size|. The size
// that the GetDataSize() method will return is set to |buffer_size|.
// If, after filling the buffer, the caller wants to set the size to a smaller
// value then they can call the SetDataSize() method.
virtual uint8* GetWritableData(size_t buffer_size) = 0;
// Updates the size of valid data in bytes, which must be less than or equal
// to the |buffer_size| passed to GetWritableData().
virtual void SetDataSize(size_t data_size) = 0;
};
struct VideoSurface {
static const size_t kMaxPlanes = 3;
static const size_t kNumRGBPlanes = 1;
static const size_t kRGBPlane = 0;
static const size_t kNumYUVPlanes = 3;
static const size_t kYPlane = 0;
static const size_t kUPlane = 1;
static const size_t kVPlane = 2;
// Surface formats roughly based on FOURCC labels, see:
// http://www.fourcc.org/rgb.php
// http://www.fourcc.org/yuv.php
enum Format {
RGB555, // 16bpp RGB packed 5:5:5
RGB565, // 16bpp RGB packed 5:6:5
RGB24, // 24bpp RGB packed 8:8:8
RGB32, // 32bpp RGB packed with extra byte 8:8:8
RGBA, // 32bpp RGBA packed 8:8:8:8
YV12, // 12bpp YVU planar 1x1 Y, 2x2 VU samples
YV16, // 16bpp YVU planar 1x1 Y, 2x1 VU samples
};
// Surface format.
Format format;
// Width and height of surface.
size_t width;
size_t height;
// Number of planes, typically 1 for packed RGB formats and 3 for planar
// YUV formats.
size_t planes;
// Array of strides for each plane, typically greater or equal to the width
// of the surface divided by the horizontal sampling period.
size_t strides[kMaxPlanes];
// Array of data pointers to each plane.
uint8* data[kMaxPlanes];
};
class VideoFrame : public StreamSample {
public:
// Locks the underlying surface and fills out the given VideoSurface and
// returns true if successful, false otherwise. Any additional calls to Lock
// will fail.
virtual bool Lock(VideoSurface* surface) = 0;
// Unlocks the underlying surface, the VideoSurface acquired from Lock is no
// longer guaranteed to be valid.
virtual void Unlock() = 0;
};
// An interface for receiving the results of an asynchronous read. Downstream
// filters typically implement this interface or use AssignableBuffer and
// provide it to upstream filters as a read request. When the upstream filter
// has completed the read, they call SetBuffer/OnAssignment to notify the
// downstream filter.
//
// TODO(scherkus): rethink the Assignable interface -- it's a bit kludgy.
template <class BufferType>
class Assignable
: public base::RefCountedThreadSafe< Assignable<BufferType> > {
public:
// Assigns a buffer to the owner.
virtual void SetBuffer(BufferType* buffer) = 0;
// Notifies the owner that an assignment has been completed.
virtual void OnAssignment() = 0;
// TODO(scherkus): figure out a solution to friending a template.
// See http://www.comeaucomputing.com/techtalk/templates/#friendclassT for
// an explanation.
// protected:
// friend class base::RefCountedThreadSafe< Assignable<class T> >;
virtual ~Assignable() {}
};
// Template for easily creating Assignable buffers. Pass in the pointer of the
// object to receive the OnAssignment callback.
template <class OwnerType, class BufferType>
class AssignableBuffer : public Assignable<BufferType> {
public:
explicit AssignableBuffer(OwnerType* owner)
: owner_(owner),
buffer_(NULL) {
DCHECK(owner_);
}
// AssignableBuffer<BufferType> implementation.
virtual void SetBuffer(BufferType* buffer) {
buffer_ = buffer;
}
virtual void OnAssignment() {
owner_->OnAssignment(buffer_.get());
}
private:
OwnerType* owner_;
scoped_refptr<BufferType> buffer_;
DISALLOW_COPY_AND_ASSIGN(AssignableBuffer);
};
} // namespace media
#endif // MEDIA_BASE_BUFFERS_H_
|