1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <cstdlib>
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "base/time/time.h"
#include "media/base/data_buffer.h"
#include "media/base/seekable_buffer.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace media {
class SeekableBufferTest : public testing::Test {
public:
SeekableBufferTest() : buffer_(kBufferSize, kBufferSize) {
}
protected:
static const int kDataSize = 409600;
static const int kBufferSize = 4096;
static const int kWriteSize = 512;
void SetUp() override {
// Note: We use srand() and rand() rather than base::RandXXX() to improve
// unit test performance. We don't need good random numbers, just
// something that generates "mixed data."
const unsigned int kKnownSeed = 0x98765432;
srand(kKnownSeed);
// Create random test data samples.
for (int i = 0; i < kDataSize; i++)
data_[i] = static_cast<char>(rand());
}
int GetRandomInt(int maximum) {
return rand() % (maximum + 1);
}
SeekableBuffer buffer_;
uint8 data_[kDataSize];
uint8 write_buffer_[kDataSize];
};
TEST_F(SeekableBufferTest, RandomReadWrite) {
int write_position = 0;
int read_position = 0;
while (read_position < kDataSize) {
// Write a random amount of data.
int write_size = GetRandomInt(kBufferSize);
write_size = std::min(write_size, kDataSize - write_position);
bool should_append = buffer_.Append(data_ + write_position, write_size);
write_position += write_size;
EXPECT_GE(write_position, read_position);
EXPECT_EQ(write_position - read_position, buffer_.forward_bytes());
EXPECT_EQ(should_append, buffer_.forward_bytes() < kBufferSize)
<< "Incorrect buffer full reported";
// Peek a random amount of data.
int copy_size = GetRandomInt(kBufferSize);
int bytes_copied = buffer_.Peek(write_buffer_, copy_size);
EXPECT_GE(copy_size, bytes_copied);
EXPECT_EQ(0, memcmp(write_buffer_, data_ + read_position, bytes_copied));
// Read a random amount of data.
int read_size = GetRandomInt(kBufferSize);
int bytes_read = buffer_.Read(write_buffer_, read_size);
EXPECT_GE(read_size, bytes_read);
EXPECT_EQ(0, memcmp(write_buffer_, data_ + read_position, bytes_read));
read_position += bytes_read;
EXPECT_GE(write_position, read_position);
EXPECT_EQ(write_position - read_position, buffer_.forward_bytes());
}
}
TEST_F(SeekableBufferTest, ReadWriteSeek) {
const int kReadSize = kWriteSize / 4;
for (int i = 0; i < 10; ++i) {
// Write until buffer is full.
for (int j = 0; j < kBufferSize; j += kWriteSize) {
bool should_append = buffer_.Append(data_ + j, kWriteSize);
EXPECT_EQ(j < kBufferSize - kWriteSize, should_append)
<< "Incorrect buffer full reported";
EXPECT_EQ(j + kWriteSize, buffer_.forward_bytes());
}
// Simulate a read and seek pattern. Each loop reads 4 times, each time
// reading a quarter of |kWriteSize|.
int read_position = 0;
int forward_bytes = kBufferSize;
for (int j = 0; j < kBufferSize; j += kWriteSize) {
// Read.
EXPECT_EQ(kReadSize, buffer_.Read(write_buffer_, kReadSize));
forward_bytes -= kReadSize;
EXPECT_EQ(forward_bytes, buffer_.forward_bytes());
EXPECT_EQ(0, memcmp(write_buffer_, data_ + read_position, kReadSize));
read_position += kReadSize;
// Seek forward.
EXPECT_TRUE(buffer_.Seek(2 * kReadSize));
forward_bytes -= 2 * kReadSize;
read_position += 2 * kReadSize;
EXPECT_EQ(forward_bytes, buffer_.forward_bytes());
// Copy.
EXPECT_EQ(kReadSize, buffer_.Peek(write_buffer_, kReadSize));
EXPECT_EQ(forward_bytes, buffer_.forward_bytes());
EXPECT_EQ(0, memcmp(write_buffer_, data_ + read_position, kReadSize));
// Read.
EXPECT_EQ(kReadSize, buffer_.Read(write_buffer_, kReadSize));
forward_bytes -= kReadSize;
EXPECT_EQ(forward_bytes, buffer_.forward_bytes());
EXPECT_EQ(0, memcmp(write_buffer_, data_ + read_position, kReadSize));
read_position += kReadSize;
// Seek backward.
EXPECT_TRUE(buffer_.Seek(-3 * static_cast<int32>(kReadSize)));
forward_bytes += 3 * kReadSize;
read_position -= 3 * kReadSize;
EXPECT_EQ(forward_bytes, buffer_.forward_bytes());
// Copy.
EXPECT_EQ(kReadSize, buffer_.Peek(write_buffer_, kReadSize));
EXPECT_EQ(forward_bytes, buffer_.forward_bytes());
EXPECT_EQ(0, memcmp(write_buffer_, data_ + read_position, kReadSize));
// Read.
EXPECT_EQ(kReadSize, buffer_.Read(write_buffer_, kReadSize));
forward_bytes -= kReadSize;
EXPECT_EQ(forward_bytes, buffer_.forward_bytes());
EXPECT_EQ(0, memcmp(write_buffer_, data_ + read_position, kReadSize));
read_position += kReadSize;
// Copy.
EXPECT_EQ(kReadSize, buffer_.Peek(write_buffer_, kReadSize));
EXPECT_EQ(forward_bytes, buffer_.forward_bytes());
EXPECT_EQ(0, memcmp(write_buffer_, data_ + read_position, kReadSize));
// Read.
EXPECT_EQ(kReadSize, buffer_.Read(write_buffer_, kReadSize));
forward_bytes -= kReadSize;
EXPECT_EQ(forward_bytes, buffer_.forward_bytes());
EXPECT_EQ(0, memcmp(write_buffer_, data_ + read_position, kReadSize));
read_position += kReadSize;
// Seek forward.
EXPECT_TRUE(buffer_.Seek(kReadSize));
forward_bytes -= kReadSize;
read_position += kReadSize;
EXPECT_EQ(forward_bytes, buffer_.forward_bytes());
}
}
}
TEST_F(SeekableBufferTest, BufferFull) {
const int kMaxWriteSize = 2 * kBufferSize;
// Write and expect the buffer to be not full.
for (int i = 0; i < kBufferSize - kWriteSize; i += kWriteSize) {
EXPECT_TRUE(buffer_.Append(data_ + i, kWriteSize));
EXPECT_EQ(i + kWriteSize, buffer_.forward_bytes());
}
// Write until we have kMaxWriteSize bytes in the buffer. Buffer is full in
// these writes.
for (int i = buffer_.forward_bytes(); i < kMaxWriteSize; i += kWriteSize) {
EXPECT_FALSE(buffer_.Append(data_ + i, kWriteSize));
EXPECT_EQ(i + kWriteSize, buffer_.forward_bytes());
}
// Read until the buffer is empty.
int read_position = 0;
while (buffer_.forward_bytes()) {
// Read a random amount of data.
int read_size = GetRandomInt(kBufferSize);
int forward_bytes = buffer_.forward_bytes();
int bytes_read = buffer_.Read(write_buffer_, read_size);
EXPECT_EQ(0, memcmp(write_buffer_, data_ + read_position, bytes_read));
if (read_size > forward_bytes)
EXPECT_EQ(forward_bytes, bytes_read);
else
EXPECT_EQ(read_size, bytes_read);
read_position += bytes_read;
EXPECT_GE(kMaxWriteSize, read_position);
EXPECT_EQ(kMaxWriteSize - read_position, buffer_.forward_bytes());
}
// Expects we have no bytes left.
EXPECT_EQ(0, buffer_.forward_bytes());
EXPECT_EQ(0, buffer_.Read(write_buffer_, 1));
}
TEST_F(SeekableBufferTest, SeekBackward) {
EXPECT_EQ(0, buffer_.forward_bytes());
EXPECT_EQ(0, buffer_.backward_bytes());
EXPECT_FALSE(buffer_.Seek(1));
EXPECT_FALSE(buffer_.Seek(-1));
const int kReadSize = 256;
// Write into buffer until it's full.
for (int i = 0; i < kBufferSize; i += kWriteSize) {
// Write a random amount of data.
buffer_.Append(data_ + i, kWriteSize);
}
// Read until buffer is empty.
for (int i = 0; i < kBufferSize; i += kReadSize) {
EXPECT_EQ(kReadSize, buffer_.Read(write_buffer_, kReadSize));
EXPECT_EQ(0, memcmp(write_buffer_, data_ + i, kReadSize));
}
// Seek backward.
EXPECT_TRUE(buffer_.Seek(-static_cast<int32>(kBufferSize)));
EXPECT_FALSE(buffer_.Seek(-1));
// Read again.
for (int i = 0; i < kBufferSize; i += kReadSize) {
EXPECT_EQ(kReadSize, buffer_.Read(write_buffer_, kReadSize));
EXPECT_EQ(0, memcmp(write_buffer_, data_ + i, kReadSize));
}
}
TEST_F(SeekableBufferTest, GetCurrentChunk) {
const int kSeekSize = kWriteSize / 3;
scoped_refptr<DataBuffer> buffer = DataBuffer::CopyFrom(data_, kWriteSize);
const uint8* data;
int size;
EXPECT_FALSE(buffer_.GetCurrentChunk(&data, &size));
buffer_.Append(buffer.get());
EXPECT_TRUE(buffer_.GetCurrentChunk(&data, &size));
EXPECT_EQ(data, buffer->data());
EXPECT_EQ(size, buffer->data_size());
buffer_.Seek(kSeekSize);
EXPECT_TRUE(buffer_.GetCurrentChunk(&data, &size));
EXPECT_EQ(data, buffer->data() + kSeekSize);
EXPECT_EQ(size, buffer->data_size() - kSeekSize);
}
TEST_F(SeekableBufferTest, SeekForward) {
int write_position = 0;
int read_position = 0;
while (read_position < kDataSize) {
for (int i = 0; i < 10 && write_position < kDataSize; ++i) {
// Write a random amount of data.
int write_size = GetRandomInt(kBufferSize);
write_size = std::min(write_size, kDataSize - write_position);
bool should_append = buffer_.Append(data_ + write_position, write_size);
write_position += write_size;
EXPECT_GE(write_position, read_position);
EXPECT_EQ(write_position - read_position, buffer_.forward_bytes());
EXPECT_EQ(should_append, buffer_.forward_bytes() < kBufferSize)
<< "Incorrect buffer full status reported";
}
// Read a random amount of data.
int seek_size = GetRandomInt(kBufferSize);
if (buffer_.Seek(seek_size))
read_position += seek_size;
EXPECT_GE(write_position, read_position);
EXPECT_EQ(write_position - read_position, buffer_.forward_bytes());
// Read a random amount of data.
int read_size = GetRandomInt(kBufferSize);
int bytes_read = buffer_.Read(write_buffer_, read_size);
EXPECT_GE(read_size, bytes_read);
EXPECT_EQ(0, memcmp(write_buffer_, data_ + read_position, bytes_read));
read_position += bytes_read;
EXPECT_GE(write_position, read_position);
EXPECT_EQ(write_position - read_position, buffer_.forward_bytes());
}
}
TEST_F(SeekableBufferTest, AllMethods) {
EXPECT_EQ(0, buffer_.Read(write_buffer_, 0));
EXPECT_EQ(0, buffer_.Read(write_buffer_, 1));
EXPECT_TRUE(buffer_.Seek(0));
EXPECT_FALSE(buffer_.Seek(-1));
EXPECT_FALSE(buffer_.Seek(1));
EXPECT_EQ(0, buffer_.forward_bytes());
EXPECT_EQ(0, buffer_.backward_bytes());
}
TEST_F(SeekableBufferTest, GetTime) {
const int64 kNoTS = kNoTimestamp().ToInternalValue();
const struct {
int64 first_time_useconds;
int64 duration_useconds;
int consume_bytes;
int64 expected_time;
} tests[] = {
{ kNoTS, 1000000, 0, kNoTS },
{ kNoTS, 4000000, 0, kNoTS },
{ kNoTS, 8000000, 0, kNoTS },
{ kNoTS, 1000000, kWriteSize / 2, kNoTS },
{ kNoTS, 4000000, kWriteSize / 2, kNoTS },
{ kNoTS, 8000000, kWriteSize / 2, kNoTS },
{ kNoTS, 1000000, kWriteSize, kNoTS },
{ kNoTS, 4000000, kWriteSize, kNoTS },
{ kNoTS, 8000000, kWriteSize, kNoTS },
{ 0, 1000000, 0, 0 },
{ 0, 4000000, 0, 0 },
{ 0, 8000000, 0, 0 },
{ 0, 1000000, kWriteSize / 2, 500000 },
{ 0, 4000000, kWriteSize / 2, 2000000 },
{ 0, 8000000, kWriteSize / 2, 4000000 },
{ 0, 1000000, kWriteSize, 1000000 },
{ 0, 4000000, kWriteSize, 4000000 },
{ 0, 8000000, kWriteSize, 8000000 },
{ 5, 1000000, 0, 5 },
{ 5, 4000000, 0, 5 },
{ 5, 8000000, 0, 5 },
{ 5, 1000000, kWriteSize / 2, 500005 },
{ 5, 4000000, kWriteSize / 2, 2000005 },
{ 5, 8000000, kWriteSize / 2, 4000005 },
{ 5, 1000000, kWriteSize, 1000005 },
{ 5, 4000000, kWriteSize, 4000005 },
{ 5, 8000000, kWriteSize, 8000005 },
};
// current_time() must initially return kNoTimestamp().
EXPECT_EQ(kNoTimestamp().ToInternalValue(),
buffer_.current_time().ToInternalValue());
scoped_refptr<DataBuffer> buffer = DataBuffer::CopyFrom(data_, kWriteSize);
for (size_t i = 0; i < arraysize(tests); ++i) {
buffer->set_timestamp(base::TimeDelta::FromMicroseconds(
tests[i].first_time_useconds));
buffer->set_duration(base::TimeDelta::FromMicroseconds(
tests[i].duration_useconds));
buffer_.Append(buffer.get());
EXPECT_TRUE(buffer_.Seek(tests[i].consume_bytes));
int64 actual = buffer_.current_time().ToInternalValue();
EXPECT_EQ(tests[i].expected_time, actual) << "With test = { start:"
<< tests[i].first_time_useconds << ", duration:"
<< tests[i].duration_useconds << ", consumed:"
<< tests[i].consume_bytes << " }\n";
buffer_.Clear();
}
}
} // namespace media
|