summaryrefslogtreecommitdiffstats
path: root/media/base/sinc_resampler_unittest.cc
blob: 3b460a39c39e1dbe929893a8398e94516389ef75 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// MSVC++ requires this to be set before any other includes to get M_PI.
#define _USE_MATH_DEFINES

#include <cmath>

#include "base/bind.h"
#include "base/bind_helpers.h"
#include "base/cpu.h"
#include "base/strings/string_number_conversions.h"
#include "base/time/time.h"
#include "build/build_config.h"
#include "media/base/sinc_resampler.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"

using testing::_;

namespace media {

static const double kSampleRateRatio = 192000.0 / 44100.0;

// Helper class to ensure ChunkedResample() functions properly.
class MockSource {
 public:
  MOCK_METHOD2(ProvideInput, void(int frames, float* destination));
};

ACTION(ClearBuffer) {
  memset(arg1, 0, arg0 * sizeof(float));
}

ACTION(FillBuffer) {
  // Value chosen arbitrarily such that SincResampler resamples it to something
  // easily representable on all platforms; e.g., using kSampleRateRatio this
  // becomes 1.81219.
  memset(arg1, 64, arg0 * sizeof(float));
}

// Test requesting multiples of ChunkSize() frames results in the proper number
// of callbacks.
TEST(SincResamplerTest, ChunkedResample) {
  MockSource mock_source;

  // Choose a high ratio of input to output samples which will result in quick
  // exhaustion of SincResampler's internal buffers.
  SincResampler resampler(
      kSampleRateRatio, SincResampler::kDefaultRequestSize,
      base::Bind(&MockSource::ProvideInput, base::Unretained(&mock_source)));

  static const int kChunks = 2;
  int max_chunk_size = resampler.ChunkSize() * kChunks;
  scoped_ptr<float[]> resampled_destination(new float[max_chunk_size]);

  // Verify requesting ChunkSize() frames causes a single callback.
  EXPECT_CALL(mock_source, ProvideInput(_, _))
      .Times(1).WillOnce(ClearBuffer());
  resampler.Resample(resampler.ChunkSize(), resampled_destination.get());

  // Verify requesting kChunks * ChunkSize() frames causes kChunks callbacks.
  testing::Mock::VerifyAndClear(&mock_source);
  EXPECT_CALL(mock_source, ProvideInput(_, _))
      .Times(kChunks).WillRepeatedly(ClearBuffer());
  resampler.Resample(max_chunk_size, resampled_destination.get());
}

// Test flush resets the internal state properly.
TEST(SincResamplerTest, Flush) {
  MockSource mock_source;
  SincResampler resampler(
      kSampleRateRatio, SincResampler::kDefaultRequestSize,
      base::Bind(&MockSource::ProvideInput, base::Unretained(&mock_source)));
  scoped_ptr<float[]> resampled_destination(new float[resampler.ChunkSize()]);

  // Fill the resampler with junk data.
  EXPECT_CALL(mock_source, ProvideInput(_, _))
      .Times(1).WillOnce(FillBuffer());
  resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get());
  ASSERT_NE(resampled_destination[0], 0);

  // Flush and request more data, which should all be zeros now.
  resampler.Flush();
  testing::Mock::VerifyAndClear(&mock_source);
  EXPECT_CALL(mock_source, ProvideInput(_, _))
      .Times(1).WillOnce(ClearBuffer());
  resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get());
  for (int i = 0; i < resampler.ChunkSize() / 2; ++i)
    ASSERT_FLOAT_EQ(resampled_destination[i], 0);
}

// Test flush resets the internal state properly.
TEST(SincResamplerTest, DISABLED_SetRatioBench) {
  MockSource mock_source;
  SincResampler resampler(
      kSampleRateRatio, SincResampler::kDefaultRequestSize,
      base::Bind(&MockSource::ProvideInput, base::Unretained(&mock_source)));

  base::TimeTicks start = base::TimeTicks::HighResNow();
  for (int i = 1; i < 10000; ++i)
    resampler.SetRatio(1.0 / i);
  double total_time_c_ms =
      (base::TimeTicks::HighResNow() - start).InMillisecondsF();
  printf("SetRatio() took %.2fms.\n", total_time_c_ms);
}


// Define platform independent function name for Convolve* tests.
#if defined(ARCH_CPU_X86_FAMILY)
#define CONVOLVE_FUNC Convolve_SSE
#elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
#define CONVOLVE_FUNC Convolve_NEON
#endif

// Ensure various optimized Convolve() methods return the same value.  Only run
// this test if other optimized methods exist, otherwise the default Convolve()
// will be tested by the parameterized SincResampler tests below.
#if defined(CONVOLVE_FUNC)
static const double kKernelInterpolationFactor = 0.5;

TEST(SincResamplerTest, Convolve) {
#if defined(ARCH_CPU_X86_FAMILY)
  ASSERT_TRUE(base::CPU().has_sse());
#endif

  // Initialize a dummy resampler.
  MockSource mock_source;
  SincResampler resampler(
      kSampleRateRatio, SincResampler::kDefaultRequestSize,
      base::Bind(&MockSource::ProvideInput, base::Unretained(&mock_source)));

  // The optimized Convolve methods are slightly more precise than Convolve_C(),
  // so comparison must be done using an epsilon.
  static const double kEpsilon = 0.00000005;

  // Use a kernel from SincResampler as input and kernel data, this has the
  // benefit of already being properly sized and aligned for Convolve_SSE().
  double result = resampler.Convolve_C(
      resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
      resampler.kernel_storage_.get(), kKernelInterpolationFactor);
  double result2 = resampler.CONVOLVE_FUNC(
      resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
      resampler.kernel_storage_.get(), kKernelInterpolationFactor);
  EXPECT_NEAR(result2, result, kEpsilon);

  // Test Convolve() w/ unaligned input pointer.
  result = resampler.Convolve_C(
      resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
      resampler.kernel_storage_.get(), kKernelInterpolationFactor);
  result2 = resampler.CONVOLVE_FUNC(
      resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
      resampler.kernel_storage_.get(), kKernelInterpolationFactor);
  EXPECT_NEAR(result2, result, kEpsilon);
}
#endif

// Fake audio source for testing the resampler.  Generates a sinusoidal linear
// chirp (http://en.wikipedia.org/wiki/Chirp) which can be tuned to stress the
// resampler for the specific sample rate conversion being used.
class SinusoidalLinearChirpSource {
 public:
  SinusoidalLinearChirpSource(int sample_rate,
                              int samples,
                              double max_frequency)
      : sample_rate_(sample_rate),
        total_samples_(samples),
        max_frequency_(max_frequency),
        current_index_(0) {
    // Chirp rate.
    double duration = static_cast<double>(total_samples_) / sample_rate_;
    k_ = (max_frequency_ - kMinFrequency) / duration;
  }

  virtual ~SinusoidalLinearChirpSource() {}

  void ProvideInput(int frames, float* destination) {
    for (int i = 0; i < frames; ++i, ++current_index_) {
      // Filter out frequencies higher than Nyquist.
      if (Frequency(current_index_) > 0.5 * sample_rate_) {
        destination[i] = 0;
      } else {
        // Calculate time in seconds.
        double t = static_cast<double>(current_index_) / sample_rate_;

        // Sinusoidal linear chirp.
        destination[i] = sin(2 * M_PI * (kMinFrequency * t + (k_ / 2) * t * t));
      }
    }
  }

  double Frequency(int position) {
    return kMinFrequency + position * (max_frequency_ - kMinFrequency)
        / total_samples_;
  }

 private:
  enum {
    kMinFrequency = 5
  };

  double sample_rate_;
  int total_samples_;
  double max_frequency_;
  double k_;
  int current_index_;

  DISALLOW_COPY_AND_ASSIGN(SinusoidalLinearChirpSource);
};

typedef std::tr1::tuple<int, int, double, double> SincResamplerTestData;
class SincResamplerTest
    : public testing::TestWithParam<SincResamplerTestData> {
 public:
  SincResamplerTest()
      : input_rate_(std::tr1::get<0>(GetParam())),
        output_rate_(std::tr1::get<1>(GetParam())),
        rms_error_(std::tr1::get<2>(GetParam())),
        low_freq_error_(std::tr1::get<3>(GetParam())) {
  }

  virtual ~SincResamplerTest() {}

 protected:
  int input_rate_;
  int output_rate_;
  double rms_error_;
  double low_freq_error_;
};

// Tests resampling using a given input and output sample rate.
TEST_P(SincResamplerTest, Resample) {
  // Make comparisons using one second of data.
  static const double kTestDurationSecs = 1;
  int input_samples = kTestDurationSecs * input_rate_;
  int output_samples = kTestDurationSecs * output_rate_;

  // Nyquist frequency for the input sampling rate.
  double input_nyquist_freq = 0.5 * input_rate_;

  // Source for data to be resampled.
  SinusoidalLinearChirpSource resampler_source(
      input_rate_, input_samples, input_nyquist_freq);

  const double io_ratio = input_rate_ / static_cast<double>(output_rate_);
  SincResampler resampler(
      io_ratio, SincResampler::kDefaultRequestSize,
      base::Bind(&SinusoidalLinearChirpSource::ProvideInput,
                 base::Unretained(&resampler_source)));

  // Force an update to the sample rate ratio to ensure dyanmic sample rate
  // changes are working correctly.
  scoped_ptr<float[]> kernel(new float[SincResampler::kKernelStorageSize]);
  memcpy(kernel.get(), resampler.get_kernel_for_testing(),
         SincResampler::kKernelStorageSize);
  resampler.SetRatio(M_PI);
  ASSERT_NE(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
                      SincResampler::kKernelStorageSize));
  resampler.SetRatio(io_ratio);
  ASSERT_EQ(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
                      SincResampler::kKernelStorageSize));

  // TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to
  // allocate these on 32-byte boundaries and ensure they're sized % 32 bytes.
  scoped_ptr<float[]> resampled_destination(new float[output_samples]);
  scoped_ptr<float[]> pure_destination(new float[output_samples]);

  // Generate resampled signal.
  resampler.Resample(output_samples, resampled_destination.get());

  // Generate pure signal.
  SinusoidalLinearChirpSource pure_source(
      output_rate_, output_samples, input_nyquist_freq);
  pure_source.ProvideInput(output_samples, pure_destination.get());

  // Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which
  // we refer to as low and high.
  static const double kLowFrequencyNyquistRange = 0.7;
  static const double kHighFrequencyNyquistRange = 0.9;

  // Calculate Root-Mean-Square-Error and maximum error for the resampling.
  double sum_of_squares = 0;
  double low_freq_max_error = 0;
  double high_freq_max_error = 0;
  int minimum_rate = std::min(input_rate_, output_rate_);
  double low_frequency_range = kLowFrequencyNyquistRange * 0.5 * minimum_rate;
  double high_frequency_range = kHighFrequencyNyquistRange * 0.5 * minimum_rate;
  for (int i = 0; i < output_samples; ++i) {
    double error = fabs(resampled_destination[i] - pure_destination[i]);

    if (pure_source.Frequency(i) < low_frequency_range) {
      if (error > low_freq_max_error)
        low_freq_max_error = error;
    } else if (pure_source.Frequency(i) < high_frequency_range) {
      if (error > high_freq_max_error)
        high_freq_max_error = error;
    }
    // TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange.

    sum_of_squares += error * error;
  }

  double rms_error = sqrt(sum_of_squares / output_samples);

  // Convert each error to dbFS.
  #define DBFS(x) 20 * log10(x)
  rms_error = DBFS(rms_error);
  low_freq_max_error = DBFS(low_freq_max_error);
  high_freq_max_error = DBFS(high_freq_max_error);

  EXPECT_LE(rms_error, rms_error_);
  EXPECT_LE(low_freq_max_error, low_freq_error_);

  // All conversions currently have a high frequency error around -6 dbFS.
  static const double kHighFrequencyMaxError = -6.02;
  EXPECT_LE(high_freq_max_error, kHighFrequencyMaxError);
}

// Almost all conversions have an RMS error of around -14 dbFS.
static const double kResamplingRMSError = -14.58;

// Thresholds chosen arbitrarily based on what each resampling reported during
// testing.  All thresholds are in dbFS, http://en.wikipedia.org/wiki/DBFS.
INSTANTIATE_TEST_CASE_P(
    SincResamplerTest, SincResamplerTest, testing::Values(
        // To 44.1kHz
        std::tr1::make_tuple(8000, 44100, kResamplingRMSError, -62.73),
        std::tr1::make_tuple(11025, 44100, kResamplingRMSError, -72.19),
        std::tr1::make_tuple(16000, 44100, kResamplingRMSError, -62.54),
        std::tr1::make_tuple(22050, 44100, kResamplingRMSError, -73.53),
        std::tr1::make_tuple(32000, 44100, kResamplingRMSError, -63.32),
        std::tr1::make_tuple(44100, 44100, kResamplingRMSError, -73.53),
        std::tr1::make_tuple(48000, 44100, -15.01, -64.04),
        std::tr1::make_tuple(96000, 44100, -18.49, -25.51),
        std::tr1::make_tuple(192000, 44100, -20.50, -13.31),

        // To 48kHz
        std::tr1::make_tuple(8000, 48000, kResamplingRMSError, -63.43),
        std::tr1::make_tuple(11025, 48000, kResamplingRMSError, -62.61),
        std::tr1::make_tuple(16000, 48000, kResamplingRMSError, -63.96),
        std::tr1::make_tuple(22050, 48000, kResamplingRMSError, -62.42),
        std::tr1::make_tuple(32000, 48000, kResamplingRMSError, -64.04),
        std::tr1::make_tuple(44100, 48000, kResamplingRMSError, -62.63),
        std::tr1::make_tuple(48000, 48000, kResamplingRMSError, -73.52),
        std::tr1::make_tuple(96000, 48000, -18.40, -28.44),
        std::tr1::make_tuple(192000, 48000, -20.43, -14.11),

        // To 96kHz
        std::tr1::make_tuple(8000, 96000, kResamplingRMSError, -63.19),
        std::tr1::make_tuple(11025, 96000, kResamplingRMSError, -62.61),
        std::tr1::make_tuple(16000, 96000, kResamplingRMSError, -63.39),
        std::tr1::make_tuple(22050, 96000, kResamplingRMSError, -62.42),
        std::tr1::make_tuple(32000, 96000, kResamplingRMSError, -63.95),
        std::tr1::make_tuple(44100, 96000, kResamplingRMSError, -62.63),
        std::tr1::make_tuple(48000, 96000, kResamplingRMSError, -73.52),
        std::tr1::make_tuple(96000, 96000, kResamplingRMSError, -73.52),
        std::tr1::make_tuple(192000, 96000, kResamplingRMSError, -28.41),

        // To 192kHz
        std::tr1::make_tuple(8000, 192000, kResamplingRMSError, -63.10),
        std::tr1::make_tuple(11025, 192000, kResamplingRMSError, -62.61),
        std::tr1::make_tuple(16000, 192000, kResamplingRMSError, -63.14),
        std::tr1::make_tuple(22050, 192000, kResamplingRMSError, -62.42),
        std::tr1::make_tuple(32000, 192000, kResamplingRMSError, -63.38),
        std::tr1::make_tuple(44100, 192000, kResamplingRMSError, -62.63),
        std::tr1::make_tuple(48000, 192000, kResamplingRMSError, -73.44),
        std::tr1::make_tuple(96000, 192000, kResamplingRMSError, -73.52),
        std::tr1::make_tuple(192000, 192000, kResamplingRMSError, -73.52)));

}  // namespace media