1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/base/test_helpers.h"
#include "base/bind.h"
#include "base/logging.h"
#include "base/message_loop.h"
#include "base/test/test_timeouts.h"
#include "base/time/time.h"
#include "base/timer/timer.h"
#include "media/base/audio_buffer.h"
#include "media/base/bind_to_loop.h"
#include "ui/gfx/rect.h"
using ::testing::_;
using ::testing::StrictMock;
namespace media {
// Utility mock for testing methods expecting Closures and PipelineStatusCBs.
class MockCallback : public base::RefCountedThreadSafe<MockCallback> {
public:
MockCallback();
MOCK_METHOD0(Run, void());
MOCK_METHOD1(RunWithStatus, void(PipelineStatus));
protected:
friend class base::RefCountedThreadSafe<MockCallback>;
virtual ~MockCallback();
private:
DISALLOW_COPY_AND_ASSIGN(MockCallback);
};
MockCallback::MockCallback() {}
MockCallback::~MockCallback() {}
base::Closure NewExpectedClosure() {
StrictMock<MockCallback>* callback = new StrictMock<MockCallback>();
EXPECT_CALL(*callback, Run());
return base::Bind(&MockCallback::Run, callback);
}
PipelineStatusCB NewExpectedStatusCB(PipelineStatus status) {
StrictMock<MockCallback>* callback = new StrictMock<MockCallback>();
EXPECT_CALL(*callback, RunWithStatus(status));
return base::Bind(&MockCallback::RunWithStatus, callback);
}
WaitableMessageLoopEvent::WaitableMessageLoopEvent()
: message_loop_(base::MessageLoop::current()),
signaled_(false),
status_(PIPELINE_OK) {
DCHECK(message_loop_);
}
WaitableMessageLoopEvent::~WaitableMessageLoopEvent() {}
base::Closure WaitableMessageLoopEvent::GetClosure() {
DCHECK_EQ(message_loop_, base::MessageLoop::current());
return BindToLoop(message_loop_->message_loop_proxy(), base::Bind(
&WaitableMessageLoopEvent::OnCallback, base::Unretained(this),
PIPELINE_OK));
}
PipelineStatusCB WaitableMessageLoopEvent::GetPipelineStatusCB() {
DCHECK_EQ(message_loop_, base::MessageLoop::current());
return BindToLoop(message_loop_->message_loop_proxy(), base::Bind(
&WaitableMessageLoopEvent::OnCallback, base::Unretained(this)));
}
void WaitableMessageLoopEvent::RunAndWait() {
RunAndWaitForStatus(PIPELINE_OK);
}
void WaitableMessageLoopEvent::RunAndWaitForStatus(PipelineStatus expected) {
DCHECK_EQ(message_loop_, base::MessageLoop::current());
if (signaled_) {
EXPECT_EQ(expected, status_);
return;
}
base::Timer timer(false, false);
timer.Start(FROM_HERE, TestTimeouts::action_timeout(), base::Bind(
&WaitableMessageLoopEvent::OnTimeout, base::Unretained(this)));
message_loop_->Run();
EXPECT_TRUE(signaled_);
EXPECT_EQ(expected, status_);
}
void WaitableMessageLoopEvent::OnCallback(PipelineStatus status) {
DCHECK_EQ(message_loop_, base::MessageLoop::current());
signaled_ = true;
status_ = status;
message_loop_->QuitWhenIdle();
}
void WaitableMessageLoopEvent::OnTimeout() {
DCHECK_EQ(message_loop_, base::MessageLoop::current());
ADD_FAILURE() << "Timed out waiting for message loop to quit";
message_loop_->QuitWhenIdle();
}
static VideoDecoderConfig GetTestConfig(VideoCodec codec,
gfx::Size coded_size,
bool is_encrypted) {
gfx::Rect visible_rect(coded_size.width(), coded_size.height());
gfx::Size natural_size = coded_size;
return VideoDecoderConfig(codec, VIDEO_CODEC_PROFILE_UNKNOWN,
VideoFrame::YV12, coded_size, visible_rect, natural_size,
NULL, 0, is_encrypted);
}
static const gfx::Size kNormalSize(320, 240);
static const gfx::Size kLargeSize(640, 480);
VideoDecoderConfig TestVideoConfig::Invalid() {
return GetTestConfig(kUnknownVideoCodec, kNormalSize, false);
}
VideoDecoderConfig TestVideoConfig::Normal() {
return GetTestConfig(kCodecVP8, kNormalSize, false);
}
VideoDecoderConfig TestVideoConfig::NormalEncrypted() {
return GetTestConfig(kCodecVP8, kNormalSize, true);
}
VideoDecoderConfig TestVideoConfig::Large() {
return GetTestConfig(kCodecVP8, kLargeSize, false);
}
VideoDecoderConfig TestVideoConfig::LargeEncrypted() {
return GetTestConfig(kCodecVP8, kLargeSize, true);
}
gfx::Size TestVideoConfig::NormalCodedSize() {
return kNormalSize;
}
gfx::Size TestVideoConfig::LargeCodedSize() {
return kLargeSize;
}
template <class T>
scoped_refptr<AudioBuffer> MakeInterleavedAudioBuffer(
SampleFormat format,
int channels,
T start,
T increment,
int frames,
base::TimeDelta start_time) {
DCHECK(format == kSampleFormatU8 || format == kSampleFormatS16 ||
format == kSampleFormatS32 || format == kSampleFormatF32);
// Create a block of memory with values:
// start
// start + increment
// start + 2 * increment, ...
// Since this is interleaved data, channel 0 data will be:
// start
// start + channels * increment
// start + 2 * channels * increment, ...
int buffer_size = frames * channels * sizeof(T);
scoped_ptr<uint8[]> memory(new uint8[buffer_size]);
uint8* data[] = { memory.get() };
T* buffer = reinterpret_cast<T*>(memory.get());
for (int i = 0; i < frames * channels; ++i) {
buffer[i] = start;
start += increment;
}
// Duration is 1 second per frame (for simplicity).
base::TimeDelta duration = base::TimeDelta::FromSeconds(frames);
return AudioBuffer::CopyFrom(
format, channels, frames, data, start_time, duration);
}
template <class T>
scoped_refptr<AudioBuffer> MakePlanarAudioBuffer(
SampleFormat format,
int channels,
T start,
T increment,
int frames,
base::TimeDelta start_time) {
DCHECK(format == kSampleFormatPlanarF32 || format == kSampleFormatPlanarS16);
// Create multiple blocks of data, one for each channel.
// Values in channel 0 will be:
// start
// start + increment
// start + 2 * increment, ...
// Values in channel 1 will be:
// start + frames * increment
// start + (frames + 1) * increment
// start + (frames + 2) * increment, ...
int buffer_size = frames * sizeof(T);
scoped_ptr<uint8*[]> data(new uint8*[channels]);
scoped_ptr<uint8[]> memory(new uint8[channels * buffer_size]);
for (int i = 0; i < channels; ++i) {
data.get()[i] = memory.get() + i * buffer_size;
T* buffer = reinterpret_cast<T*>(data.get()[i]);
for (int j = 0; j < frames; ++j) {
buffer[j] = start;
start += increment;
}
}
// Duration is 1 second per frame (for simplicity).
base::TimeDelta duration = base::TimeDelta::FromSeconds(frames);
return AudioBuffer::CopyFrom(
format, channels, frames, data.get(), start_time, duration);
}
// Instantiate all the types of MakeInterleavedAudioBuffer() and
// MakePlanarAudioBuffer() needed.
#define DEFINE_INTERLEAVED_INSTANCE(type) \
template scoped_refptr<AudioBuffer> MakeInterleavedAudioBuffer<type>( \
SampleFormat format, \
int channels, \
type start, \
type increment, \
int frames, \
base::TimeDelta start_time)
DEFINE_INTERLEAVED_INSTANCE(uint8);
DEFINE_INTERLEAVED_INSTANCE(int16);
DEFINE_INTERLEAVED_INSTANCE(int32);
DEFINE_INTERLEAVED_INSTANCE(float);
#define DEFINE_PLANAR_INSTANCE(type) \
template scoped_refptr<AudioBuffer> MakePlanarAudioBuffer<type>( \
SampleFormat format, \
int channels, \
type start, \
type increment, \
int frames, \
base::TimeDelta start_time);
DEFINE_PLANAR_INSTANCE(int16);
DEFINE_PLANAR_INSTANCE(float);
} // namespace media
|