summaryrefslogtreecommitdiffstats
path: root/media/base/video_frame.cc
blob: 9d81804915df36c972602f03d1f9fa457696409c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/base/video_frame.h"

namespace media {

// static
void VideoFrame::CreateFrame(VideoFrame::Format format,
                             size_t width,
                             size_t height,
                             base::TimeDelta timestamp,
                             base::TimeDelta duration,
                             scoped_refptr<VideoFrame>* frame_out) {
  DCHECK(width > 0 && height > 0);
  DCHECK(width * height < 100000000);
  DCHECK(frame_out);
  bool alloc_worked = false;
  scoped_refptr<VideoFrame> frame =
      new VideoFrame(VideoFrame::TYPE_SYSTEM_MEMORY, format, width, height);
  if (frame) {
    frame->SetTimestamp(timestamp);
    frame->SetDuration(duration);
    switch (format) {
      case VideoFrame::RGB555:
      case VideoFrame::RGB565:
        alloc_worked = frame->AllocateRGB(2u);
        break;
      case VideoFrame::RGB24:
        alloc_worked = frame->AllocateRGB(3u);
        break;
      case VideoFrame::RGB32:
      case VideoFrame::RGBA:
        alloc_worked = frame->AllocateRGB(4u);
        break;
      case VideoFrame::YV12:
      case VideoFrame::YV16:
        alloc_worked = frame->AllocateYUV();
        break;
      default:
        NOTREACHED();
        alloc_worked = false;
        break;
    }
  }
  *frame_out = alloc_worked ? frame : NULL;
}

// static
void VideoFrame::CreateEmptyFrame(scoped_refptr<VideoFrame>* frame_out) {
  *frame_out = new VideoFrame(VideoFrame::TYPE_SYSTEM_MEMORY,
                              VideoFrame::EMPTY, 0, 0);
}

// static
void VideoFrame::CreateBlackFrame(int width, int height,
                                  scoped_refptr<VideoFrame>* frame_out) {
  DCHECK_GT(width, 0);
  DCHECK_GT(height, 0);

  // Create our frame.
  scoped_refptr<VideoFrame> frame;
  const base::TimeDelta kZero;
  VideoFrame::CreateFrame(VideoFrame::YV12, width, height, kZero, kZero,
                          &frame);
  DCHECK(frame);

  // Now set the data to YUV(0,128,128).
  const uint8 kBlackY = 0x00;
  const uint8 kBlackUV = 0x80;

  // Fill the Y plane.
  uint8* y_plane = frame->data(VideoFrame::kYPlane);
  for (size_t i = 0; i < frame->height_; ++i) {
    memset(y_plane, kBlackY, frame->width_);
    y_plane += frame->stride(VideoFrame::kYPlane);
  }

  // Fill the U and V planes.
  uint8* u_plane = frame->data(VideoFrame::kUPlane);
  uint8* v_plane = frame->data(VideoFrame::kVPlane);
  for (size_t i = 0; i < (frame->height_ / 2); ++i) {
    memset(u_plane, kBlackUV, frame->width_ / 2);
    memset(v_plane, kBlackUV, frame->width_ / 2);
    u_plane += frame->stride(VideoFrame::kUPlane);
    v_plane += frame->stride(VideoFrame::kVPlane);
  }

  // Success!
  *frame_out = frame;
}

// static
void VideoFrame::CreatePrivateFrame(VideoFrame::BufferType type,
                                    VideoFrame::Format format,
                                    size_t width,
                                    size_t height,
                                    base::TimeDelta timestamp,
                                    base::TimeDelta duration,
                                    void* private_buffer,
                                    scoped_refptr<VideoFrame>* frame_out) {
  DCHECK(frame_out);
  scoped_refptr<VideoFrame> frame =
      new VideoFrame(type, format, width, height);
  if (frame) {
    frame->SetTimestamp(timestamp);
    frame->SetDuration(duration);
    frame->private_buffer_ = private_buffer;
  }
  *frame_out = frame;
}

static inline size_t RoundUp(size_t value, size_t alignment) {
  // Check that |alignment| is a power of 2.
  DCHECK((alignment + (alignment - 1)) == (alignment | (alignment - 1)));
  return ((value + (alignment - 1)) & ~(alignment-1));
}

bool VideoFrame::AllocateRGB(size_t bytes_per_pixel) {
  // Round up to align at a 64-bit (8 byte) boundary for each row.  This
  // is sufficient for MMX reads (movq).
  size_t bytes_per_row = RoundUp(width_ * bytes_per_pixel, 8);
  planes_ = VideoFrame::kNumRGBPlanes;
  strides_[VideoFrame::kRGBPlane] = bytes_per_row;
  data_[VideoFrame::kRGBPlane] = new uint8[bytes_per_row * height_];
  DCHECK(data_[VideoFrame::kRGBPlane]);
  DCHECK(!(reinterpret_cast<intptr_t>(data_[VideoFrame::kRGBPlane]) & 7));
  COMPILE_ASSERT(0 == VideoFrame::kRGBPlane, RGB_data_must_be_index_0);
  return (NULL != data_[VideoFrame::kRGBPlane]);
}

bool VideoFrame::AllocateYUV() {
  DCHECK(format_ == VideoFrame::YV12 ||
         format_ == VideoFrame::YV16);
  // Align Y rows at 32-bit (4 byte) boundaries.  The stride for both YV12 and
  // YV16 is 1/2 of the stride of Y.  For YV12, every row of bytes for U and V
  // applies to two rows of Y (one byte of UV for 4 bytes of Y), so in the
  // case of YV12 the strides are identical for the same width surface, but the
  // number of bytes allocated for YV12 is 1/2 the amount for U & V as YV16.
  // We also round the height of the surface allocated to be an even number
  // to avoid any potential of faulting by code that attempts to access the Y
  // values of the final row, but assumes that the last row of U & V applies to
  // a full two rows of Y.
  size_t alloc_height = RoundUp(height_, 2);
  size_t y_bytes_per_row = RoundUp(width_, 4);
  size_t uv_stride = RoundUp(y_bytes_per_row / 2, 4);
  size_t y_bytes = alloc_height * y_bytes_per_row;
  size_t uv_bytes = alloc_height * uv_stride;
  if (format_ == VideoFrame::YV12) {
    uv_bytes /= 2;
  }
  uint8* data = new uint8[y_bytes + (uv_bytes * 2)];
  if (data) {
    planes_ = VideoFrame::kNumYUVPlanes;
    COMPILE_ASSERT(0 == VideoFrame::kYPlane, y_plane_data_must_be_index_0);
    data_[VideoFrame::kYPlane] = data;
    data_[VideoFrame::kUPlane] = data + y_bytes;
    data_[VideoFrame::kVPlane] = data + y_bytes + uv_bytes;
    strides_[VideoFrame::kYPlane] = y_bytes_per_row;
    strides_[VideoFrame::kUPlane] = uv_stride;
    strides_[VideoFrame::kVPlane] = uv_stride;
    return true;
  }
  NOTREACHED();
  return false;
}

VideoFrame::VideoFrame(VideoFrame::BufferType type,
                       VideoFrame::Format format,
                       size_t width,
                       size_t height) {
  type_ = type;
  format_ = format;
  width_ = width;
  height_ = height;
  planes_ = 0;
  memset(&strides_, 0, sizeof(strides_));
  memset(&data_, 0, sizeof(data_));
  private_buffer_ = NULL;
}

VideoFrame::~VideoFrame() {
  // In multi-plane allocations, only a single block of memory is allocated
  // on the heap, and other |data| pointers point inside the same, single block
  // so just delete index 0.
  delete[] data_[0];
}

bool VideoFrame::IsEndOfStream() const {
  return format_ == VideoFrame::EMPTY;
}

}  // namespace media