1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
|
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This webpage shows layout of YV12 and other YUV formats
// http://www.fourcc.org/yuv.php
// The actual conversion is best described here
// http://en.wikipedia.org/wiki/YUV
// An article on optimizing YUV conversion using tables instead of multiplies
// http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf
//
// YV12 is a full plane of Y and a half height, half width chroma planes
// YV16 is a full plane of Y and a full height, half width chroma planes
//
// ARGB pixel format is output, which on little endian is stored as BGRA.
// The alpha is set to 255, allowing the application to use RGBA or RGB32.
#include "media/base/yuv_convert.h"
#include "media/base/cpu_features.h"
#include "media/base/yuv_convert_internal.h"
#include "media/base/yuv_row.h"
#if USE_MMX
#if defined(_MSC_VER)
#include <intrin.h>
#else
#include <mmintrin.h>
#endif
#endif
#if USE_SSE2
#include <emmintrin.h>
#endif
namespace media {
// 16.16 fixed point arithmetic
const int kFractionBits = 16;
const int kFractionMax = 1 << kFractionBits;
const int kFractionMask = ((1 << kFractionBits) - 1);
// Convert a frame of YUV to 32 bit ARGB.
void ConvertYUVToRGB32(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int width,
int height,
int y_pitch,
int uv_pitch,
int rgb_pitch,
YUVType yuv_type) {
unsigned int y_shift = yuv_type;
for (int y = 0; y < height; ++y) {
uint8* rgb_row = rgb_buf + y * rgb_pitch;
const uint8* y_ptr = y_buf + y * y_pitch;
const uint8* u_ptr = u_buf + (y >> y_shift) * uv_pitch;
const uint8* v_ptr = v_buf + (y >> y_shift) * uv_pitch;
FastConvertYUVToRGB32Row(y_ptr,
u_ptr,
v_ptr,
rgb_row,
width);
}
// MMX used for FastConvertYUVToRGB32Row requires emms instruction.
EMMS();
}
#if USE_SSE2
// FilterRows combines two rows of the image using linear interpolation.
// SSE2 version does 16 pixels at a time
static void FilterRows(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr,
int source_width, int source_y_fraction) {
__m128i zero = _mm_setzero_si128();
__m128i y1_fraction = _mm_set1_epi16(source_y_fraction);
__m128i y0_fraction = _mm_set1_epi16(256 - source_y_fraction);
const __m128i* y0_ptr128 = reinterpret_cast<const __m128i*>(y0_ptr);
const __m128i* y1_ptr128 = reinterpret_cast<const __m128i*>(y1_ptr);
__m128i* dest128 = reinterpret_cast<__m128i*>(ybuf);
__m128i* end128 = reinterpret_cast<__m128i*>(ybuf + source_width);
do {
__m128i y0 = _mm_loadu_si128(y0_ptr128);
__m128i y1 = _mm_loadu_si128(y1_ptr128);
__m128i y2 = _mm_unpackhi_epi8(y0, zero);
__m128i y3 = _mm_unpackhi_epi8(y1, zero);
y0 = _mm_unpacklo_epi8(y0, zero);
y1 = _mm_unpacklo_epi8(y1, zero);
y0 = _mm_mullo_epi16(y0, y0_fraction);
y1 = _mm_mullo_epi16(y1, y1_fraction);
y2 = _mm_mullo_epi16(y2, y0_fraction);
y3 = _mm_mullo_epi16(y3, y1_fraction);
y0 = _mm_add_epi16(y0, y1);
y2 = _mm_add_epi16(y2, y3);
y0 = _mm_srli_epi16(y0, 8);
y2 = _mm_srli_epi16(y2, 8);
y0 = _mm_packus_epi16(y0, y2);
*dest128++ = y0;
++y0_ptr128;
++y1_ptr128;
} while (dest128 < end128);
}
#elif USE_MMX
// MMX version does 8 pixels at a time
static void FilterRows(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr,
int source_width, int source_y_fraction) {
__m64 zero = _mm_setzero_si64();
__m64 y1_fraction = _mm_set1_pi16(source_y_fraction);
__m64 y0_fraction = _mm_set1_pi16(256 - source_y_fraction);
const __m64* y0_ptr64 = reinterpret_cast<const __m64*>(y0_ptr);
const __m64* y1_ptr64 = reinterpret_cast<const __m64*>(y1_ptr);
__m64* dest64 = reinterpret_cast<__m64*>(ybuf);
__m64* end64 = reinterpret_cast<__m64*>(ybuf + source_width);
do {
__m64 y0 = *y0_ptr64++;
__m64 y1 = *y1_ptr64++;
__m64 y2 = _mm_unpackhi_pi8(y0, zero);
__m64 y3 = _mm_unpackhi_pi8(y1, zero);
y0 = _mm_unpacklo_pi8(y0, zero);
y1 = _mm_unpacklo_pi8(y1, zero);
y0 = _mm_mullo_pi16(y0, y0_fraction);
y1 = _mm_mullo_pi16(y1, y1_fraction);
y2 = _mm_mullo_pi16(y2, y0_fraction);
y3 = _mm_mullo_pi16(y3, y1_fraction);
y0 = _mm_add_pi16(y0, y1);
y2 = _mm_add_pi16(y2, y3);
y0 = _mm_srli_pi16(y0, 8);
y2 = _mm_srli_pi16(y2, 8);
y0 = _mm_packs_pu16(y0, y2);
*dest64++ = y0;
} while (dest64 < end64);
}
#else // no MMX or SSE2
// C version does 8 at a time to mimic MMX code
static void FilterRows(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr,
int source_width, int source_y_fraction) {
int y1_fraction = source_y_fraction;
int y0_fraction = 256 - y1_fraction;
uint8* end = ybuf + source_width;
do {
ybuf[0] = (y0_ptr[0] * y0_fraction + y1_ptr[0] * y1_fraction) >> 8;
ybuf[1] = (y0_ptr[1] * y0_fraction + y1_ptr[1] * y1_fraction) >> 8;
ybuf[2] = (y0_ptr[2] * y0_fraction + y1_ptr[2] * y1_fraction) >> 8;
ybuf[3] = (y0_ptr[3] * y0_fraction + y1_ptr[3] * y1_fraction) >> 8;
ybuf[4] = (y0_ptr[4] * y0_fraction + y1_ptr[4] * y1_fraction) >> 8;
ybuf[5] = (y0_ptr[5] * y0_fraction + y1_ptr[5] * y1_fraction) >> 8;
ybuf[6] = (y0_ptr[6] * y0_fraction + y1_ptr[6] * y1_fraction) >> 8;
ybuf[7] = (y0_ptr[7] * y0_fraction + y1_ptr[7] * y1_fraction) >> 8;
y0_ptr += 8;
y1_ptr += 8;
ybuf += 8;
} while (ybuf < end);
}
#endif
// Scale a frame of YUV to 32 bit ARGB.
void ScaleYUVToRGB32(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int source_width,
int source_height,
int width,
int height,
int y_pitch,
int uv_pitch,
int rgb_pitch,
YUVType yuv_type,
Rotate view_rotate,
ScaleFilter filter) {
// 4096 allows 3 buffers to fit in 12k.
// Helps performance on CPU with 16K L1 cache.
// Large enough for 3830x2160 and 30" displays which are 2560x1600.
const int kFilterBufferSize = 4096;
// Disable filtering if the screen is too big (to avoid buffer overflows).
// This should never happen to regular users: they don't have monitors
// wider than 4096 pixels.
// TODO(fbarchard): Allow rotated videos to filter.
if (source_width > kFilterBufferSize || view_rotate)
filter = FILTER_NONE;
unsigned int y_shift = yuv_type;
// Diagram showing origin and direction of source sampling.
// ->0 4<-
// 7 3
//
// 6 5
// ->1 2<-
// Rotations that start at right side of image.
if ((view_rotate == ROTATE_180) ||
(view_rotate == ROTATE_270) ||
(view_rotate == MIRROR_ROTATE_0) ||
(view_rotate == MIRROR_ROTATE_90)) {
y_buf += source_width - 1;
u_buf += source_width / 2 - 1;
v_buf += source_width / 2 - 1;
source_width = -source_width;
}
// Rotations that start at bottom of image.
if ((view_rotate == ROTATE_90) ||
(view_rotate == ROTATE_180) ||
(view_rotate == MIRROR_ROTATE_90) ||
(view_rotate == MIRROR_ROTATE_180)) {
y_buf += (source_height - 1) * y_pitch;
u_buf += ((source_height >> y_shift) - 1) * uv_pitch;
v_buf += ((source_height >> y_shift) - 1) * uv_pitch;
source_height = -source_height;
}
// Handle zero sized destination.
if (width == 0 || height == 0)
return;
int source_dx = source_width * kFractionMax / width;
int source_dy = source_height * kFractionMax / height;
int source_dx_uv = source_dx;
if ((view_rotate == ROTATE_90) ||
(view_rotate == ROTATE_270)) {
int tmp = height;
height = width;
width = tmp;
tmp = source_height;
source_height = source_width;
source_width = tmp;
int original_dx = source_dx;
int original_dy = source_dy;
source_dx = ((original_dy >> kFractionBits) * y_pitch) << kFractionBits;
source_dx_uv = ((original_dy >> kFractionBits) * uv_pitch) << kFractionBits;
source_dy = original_dx;
if (view_rotate == ROTATE_90) {
y_pitch = -1;
uv_pitch = -1;
source_height = -source_height;
} else {
y_pitch = 1;
uv_pitch = 1;
}
}
// Need padding because FilterRows() will write 1 to 16 extra pixels
// after the end for SSE2 version.
uint8 yuvbuf[16 + kFilterBufferSize * 3 + 16];
uint8* ybuf =
reinterpret_cast<uint8*>(reinterpret_cast<uintptr_t>(yuvbuf + 15) & ~15);
uint8* ubuf = ybuf + kFilterBufferSize;
uint8* vbuf = ubuf + kFilterBufferSize;
// TODO(fbarchard): Fixed point math is off by 1 on negatives.
int yscale_fixed = (source_height << kFractionBits) / height;
// TODO(fbarchard): Split this into separate function for better efficiency.
for (int y = 0; y < height; ++y) {
uint8* dest_pixel = rgb_buf + y * rgb_pitch;
int source_y_subpixel = (y * yscale_fixed);
if (yscale_fixed >= (kFractionMax * 2)) {
source_y_subpixel += kFractionMax / 2; // For 1/2 or less, center filter.
}
int source_y = source_y_subpixel >> kFractionBits;
const uint8* y0_ptr = y_buf + source_y * y_pitch;
const uint8* y1_ptr = y0_ptr + y_pitch;
const uint8* u0_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
const uint8* u1_ptr = u0_ptr + uv_pitch;
const uint8* v0_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
const uint8* v1_ptr = v0_ptr + uv_pitch;
// vertical scaler uses 16.8 fixed point
int source_y_fraction = (source_y_subpixel & kFractionMask) >> 8;
int source_uv_fraction =
((source_y_subpixel >> y_shift) & kFractionMask) >> 8;
const uint8* y_ptr = y0_ptr;
const uint8* u_ptr = u0_ptr;
const uint8* v_ptr = v0_ptr;
// Apply vertical filtering if necessary.
// TODO(fbarchard): Remove memcpy when not necessary.
if (filter & media::FILTER_BILINEAR_V) {
if (yscale_fixed != kFractionMax &&
source_y_fraction && ((source_y + 1) < source_height)) {
FilterRows(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction);
} else {
memcpy(ybuf, y0_ptr, source_width);
}
y_ptr = ybuf;
ybuf[source_width] = ybuf[source_width-1];
int uv_source_width = (source_width + 1) / 2;
if (yscale_fixed != kFractionMax &&
source_uv_fraction &&
(((source_y >> y_shift) + 1) < (source_height >> y_shift))) {
FilterRows(ubuf, u0_ptr, u1_ptr, uv_source_width, source_uv_fraction);
FilterRows(vbuf, v0_ptr, v1_ptr, uv_source_width, source_uv_fraction);
} else {
memcpy(ubuf, u0_ptr, uv_source_width);
memcpy(vbuf, v0_ptr, uv_source_width);
}
u_ptr = ubuf;
v_ptr = vbuf;
ubuf[uv_source_width] = ubuf[uv_source_width - 1];
vbuf[uv_source_width] = vbuf[uv_source_width - 1];
}
if (source_dx == kFractionMax) { // Not scaled
FastConvertYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
dest_pixel, width);
} else {
if (filter & FILTER_BILINEAR_H) {
LinearScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
dest_pixel, width, source_dx);
} else {
// Specialized scalers and rotation.
#if USE_MMX && defined(_MSC_VER)
if (width == (source_width * 2)) {
DoubleYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
dest_pixel, width);
} else if ((source_dx & kFractionMask) == 0) {
// Scaling by integer scale factor. ie half.
ConvertYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
dest_pixel, width,
source_dx >> kFractionBits);
} else if (source_dx_uv == source_dx) { // Not rotated.
ScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
dest_pixel, width, source_dx);
} else {
RotateConvertYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
dest_pixel, width,
source_dx >> kFractionBits,
source_dx_uv >> kFractionBits);
}
#else
ScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
dest_pixel, width, source_dx);
#endif
}
}
}
// MMX used for FastConvertYUVToRGB32Row and FilterRows requires emms.
EMMS();
}
void ConvertRGB32ToYUV(const uint8* rgbframe,
uint8* yplane,
uint8* uplane,
uint8* vplane,
int width,
int height,
int rgbstride,
int ystride,
int uvstride) {
static void (*convert_proc)(const uint8*, uint8*, uint8*, uint8*,
int, int, int, int, int) = NULL;
if (!convert_proc) {
#ifdef __arm__
// For ARM processors, always use C version.
// TODO(hclam): Implement a NEON version.
convert_proc = &ConvertRGB32ToYUV_C;
#else
// For x86 processors, check if SSE2 is supported.
if (hasSSE2())
convert_proc = &ConvertRGB32ToYUV_SSE2;
else
convert_proc = &ConvertRGB32ToYUV_C;
#endif
}
convert_proc(rgbframe, yplane, uplane, vplane, width, height,
rgbstride, ystride, uvstride);
}
} // namespace media
|