summaryrefslogtreecommitdiffstats
path: root/media/base/yuv_convert.cc
blob: 22f1a2409bc2f3d36bbc74d5bfe6cb3cbed6c90a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// This webpage shows layout of YV12 and other YUV formats
// http://www.fourcc.org/yuv.php
// The actual conversion is best described here
// http://en.wikipedia.org/wiki/YUV
// An article on optimizing YUV conversion using tables instead of multiplies
// http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf
//
// YV12 is a full plane of Y and a half height, half width chroma planes
// YV16 is a full plane of Y and a full height, half width chroma planes
//
// ARGB pixel format is output, which on little endian is stored as BGRA.
// The alpha is set to 255, allowing the application to use RGBA or RGB32.

#include "media/base/yuv_convert.h"

#include "base/logging.h"
#include "build/build_config.h"
#include "media/base/cpu_features.h"
#include "media/base/simd/convert_rgb_to_yuv.h"
#include "media/base/simd/convert_yuv_to_rgb.h"
#include "media/base/simd/filter_yuv.h"
#include "media/base/yuv_convert_internal.h"
#include "media/base/yuv_row.h"

#if defined(ARCH_CPU_X86_FAMILY)
#if defined(_MSC_VER)
#include <intrin.h>
#else
#include <emmintrin.h>
#include <mmintrin.h>
#endif
#endif

namespace media {

static FilterYUVRowsProc ChooseFilterYUVRowsProc() {
#if defined(ARCH_CPU_X86_FAMILY)
  if (hasSSE2())
    return &FilterYUVRows_SSE2;
  if (hasMMX())
    return &FilterYUVRows_MMX;
#endif
  return &FilterYUVRows_C;
}

static ConvertYUVToRGB32RowProc ChooseConvertYUVToRGB32RowProc() {
#if defined(ARCH_CPU_X86_FAMILY)
  if (hasSSE())
    return &ConvertYUVToRGB32Row_SSE;
  if (hasMMX())
    return &ConvertYUVToRGB32Row_MMX;
#endif
  return &ConvertYUVToRGB32Row_C;
}

static ScaleYUVToRGB32RowProc ChooseScaleYUVToRGB32RowProc() {
#if defined(ARCH_CPU_X86_FAMILY)
#if defined(ARCH_CPU_X86_64)
  // Use 64-bits version if possible.
  return &ScaleYUVToRGB32Row_SSE2_X64;
#endif
  // Choose the best one on 32-bits system.
  if (hasSSE())
    return &ScaleYUVToRGB32Row_SSE;
  if (hasMMX())
    return &ScaleYUVToRGB32Row_MMX;
#endif
  return &ScaleYUVToRGB32Row_C;
}

static ScaleYUVToRGB32RowProc ChooseLinearScaleYUVToRGB32RowProc() {
#if defined(ARCH_CPU_X86_FAMILY)
#if defined(ARCH_CPU_X86_64)
  // Use 64-bits version if possible.
  return &LinearScaleYUVToRGB32Row_MMX_X64;
#endif
  // 32-bits system.
  if (hasSSE())
    return &LinearScaleYUVToRGB32Row_SSE;
  if (hasMMX())
    return &LinearScaleYUVToRGB32Row_MMX;
#endif
  return &LinearScaleYUVToRGB32Row_C;
}

// Empty SIMD registers state after using them.
void EmptyRegisterState() {
#if defined(ARCH_CPU_X86_FAMILY)
  static bool checked = false;
  static bool has_mmx = false;
  if (!checked) {
    has_mmx = hasMMX();
    checked = true;
  }
  if (has_mmx)
    _mm_empty();
#endif
}

// 16.16 fixed point arithmetic
const int kFractionBits = 16;
const int kFractionMax = 1 << kFractionBits;
const int kFractionMask = ((1 << kFractionBits) - 1);

// Scale a frame of YUV to 32 bit ARGB.
void ScaleYUVToRGB32(const uint8* y_buf,
                     const uint8* u_buf,
                     const uint8* v_buf,
                     uint8* rgb_buf,
                     int source_width,
                     int source_height,
                     int width,
                     int height,
                     int y_pitch,
                     int uv_pitch,
                     int rgb_pitch,
                     YUVType yuv_type,
                     Rotate view_rotate,
                     ScaleFilter filter) {
  static FilterYUVRowsProc filter_proc = NULL;
  static ConvertYUVToRGB32RowProc convert_proc = NULL;
  static ScaleYUVToRGB32RowProc scale_proc = NULL;
  static ScaleYUVToRGB32RowProc linear_scale_proc = NULL;

  if (!filter_proc)
    filter_proc = ChooseFilterYUVRowsProc();
  if (!convert_proc)
    convert_proc = ChooseConvertYUVToRGB32RowProc();
  if (!scale_proc)
    scale_proc = ChooseScaleYUVToRGB32RowProc();
  if (!linear_scale_proc)
    linear_scale_proc = ChooseLinearScaleYUVToRGB32RowProc();

  // Handle zero sized sources and destinations.
  if ((yuv_type == YV12 && (source_width < 2 || source_height < 2)) ||
      (yuv_type == YV16 && (source_width < 2 || source_height < 1)) ||
      width == 0 || height == 0)
    return;

  // 4096 allows 3 buffers to fit in 12k.
  // Helps performance on CPU with 16K L1 cache.
  // Large enough for 3830x2160 and 30" displays which are 2560x1600.
  const int kFilterBufferSize = 4096;
  // Disable filtering if the screen is too big (to avoid buffer overflows).
  // This should never happen to regular users: they don't have monitors
  // wider than 4096 pixels.
  // TODO(fbarchard): Allow rotated videos to filter.
  if (source_width > kFilterBufferSize || view_rotate)
    filter = FILTER_NONE;

  unsigned int y_shift = yuv_type;
  // Diagram showing origin and direction of source sampling.
  // ->0   4<-
  // 7       3
  //
  // 6       5
  // ->1   2<-
  // Rotations that start at right side of image.
  if ((view_rotate == ROTATE_180) ||
      (view_rotate == ROTATE_270) ||
      (view_rotate == MIRROR_ROTATE_0) ||
      (view_rotate == MIRROR_ROTATE_90)) {
    y_buf += source_width - 1;
    u_buf += source_width / 2 - 1;
    v_buf += source_width / 2 - 1;
    source_width = -source_width;
  }
  // Rotations that start at bottom of image.
  if ((view_rotate == ROTATE_90) ||
      (view_rotate == ROTATE_180) ||
      (view_rotate == MIRROR_ROTATE_90) ||
      (view_rotate == MIRROR_ROTATE_180)) {
    y_buf += (source_height - 1) * y_pitch;
    u_buf += ((source_height >> y_shift) - 1) * uv_pitch;
    v_buf += ((source_height >> y_shift) - 1) * uv_pitch;
    source_height = -source_height;
  }

  int source_dx = source_width * kFractionMax / width;
  int source_dy = source_height * kFractionMax / height;

  if ((view_rotate == ROTATE_90) ||
      (view_rotate == ROTATE_270)) {
    int tmp = height;
    height = width;
    width = tmp;
    tmp = source_height;
    source_height = source_width;
    source_width = tmp;
    int original_dx = source_dx;
    int original_dy = source_dy;
    source_dx = ((original_dy >> kFractionBits) * y_pitch) << kFractionBits;
    source_dy = original_dx;
    if (view_rotate == ROTATE_90) {
      y_pitch = -1;
      uv_pitch = -1;
      source_height = -source_height;
    } else {
      y_pitch = 1;
      uv_pitch = 1;
    }
  }

  // Need padding because FilterRows() will write 1 to 16 extra pixels
  // after the end for SSE2 version.
  uint8 yuvbuf[16 + kFilterBufferSize * 3 + 16];
  uint8* ybuf =
      reinterpret_cast<uint8*>(reinterpret_cast<uintptr_t>(yuvbuf + 15) & ~15);
  uint8* ubuf = ybuf + kFilterBufferSize;
  uint8* vbuf = ubuf + kFilterBufferSize;
  // TODO(fbarchard): Fixed point math is off by 1 on negatives.
  int yscale_fixed = (source_height << kFractionBits) / height;

  // TODO(fbarchard): Split this into separate function for better efficiency.
  for (int y = 0; y < height; ++y) {
    uint8* dest_pixel = rgb_buf + y * rgb_pitch;
    int source_y_subpixel = (y * yscale_fixed);
    if (yscale_fixed >= (kFractionMax * 2)) {
      source_y_subpixel += kFractionMax / 2;  // For 1/2 or less, center filter.
    }
    int source_y = source_y_subpixel >> kFractionBits;

    const uint8* y0_ptr = y_buf + source_y * y_pitch;
    const uint8* y1_ptr = y0_ptr + y_pitch;

    const uint8* u0_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
    const uint8* u1_ptr = u0_ptr + uv_pitch;
    const uint8* v0_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
    const uint8* v1_ptr = v0_ptr + uv_pitch;

    // vertical scaler uses 16.8 fixed point
    int source_y_fraction = (source_y_subpixel & kFractionMask) >> 8;
    int source_uv_fraction =
        ((source_y_subpixel >> y_shift) & kFractionMask) >> 8;

    const uint8* y_ptr = y0_ptr;
    const uint8* u_ptr = u0_ptr;
    const uint8* v_ptr = v0_ptr;
    // Apply vertical filtering if necessary.
    // TODO(fbarchard): Remove memcpy when not necessary.
    if (filter & media::FILTER_BILINEAR_V) {
      if (yscale_fixed != kFractionMax &&
          source_y_fraction && ((source_y + 1) < source_height)) {
        filter_proc(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction);
      } else {
        memcpy(ybuf, y0_ptr, source_width);
      }
      y_ptr = ybuf;
      ybuf[source_width] = ybuf[source_width-1];
      int uv_source_width = (source_width + 1) / 2;
      if (yscale_fixed != kFractionMax &&
          source_uv_fraction &&
          (((source_y >> y_shift) + 1) < (source_height >> y_shift))) {
        filter_proc(ubuf, u0_ptr, u1_ptr, uv_source_width, source_uv_fraction);
        filter_proc(vbuf, v0_ptr, v1_ptr, uv_source_width, source_uv_fraction);
      } else {
        memcpy(ubuf, u0_ptr, uv_source_width);
        memcpy(vbuf, v0_ptr, uv_source_width);
      }
      u_ptr = ubuf;
      v_ptr = vbuf;
      ubuf[uv_source_width] = ubuf[uv_source_width - 1];
      vbuf[uv_source_width] = vbuf[uv_source_width - 1];
    }
    if (source_dx == kFractionMax) {  // Not scaled
      convert_proc(y_ptr, u_ptr, v_ptr, dest_pixel, width);
    } else {
      if (filter & FILTER_BILINEAR_H) {
        linear_scale_proc(y_ptr, u_ptr, v_ptr, dest_pixel, width, source_dx);
      } else {
        scale_proc(y_ptr, u_ptr, v_ptr, dest_pixel, width, source_dx);
      }
    }
  }

  EmptyRegisterState();
}

void ConvertRGB32ToYUV(const uint8* rgbframe,
                       uint8* yplane,
                       uint8* uplane,
                       uint8* vplane,
                       int width,
                       int height,
                       int rgbstride,
                       int ystride,
                       int uvstride) {
  static void (*convert_proc)(const uint8*, uint8*, uint8*, uint8*,
                              int, int, int, int, int) = NULL;
  if (!convert_proc) {
#if defined(ARCH_CPU_ARM_FAMILY)
    // For ARM processors, always use C version.
    // TODO(hclam): Implement a NEON version.
    convert_proc = &ConvertRGB32ToYUV_C;
#else
    // For x86 processors, check if SSSE3 (or SSE2) is supported.
    if (hasSSSE3())
      convert_proc = &ConvertRGB32ToYUV_SSSE3;
    else if (hasSSE2())
      convert_proc = &ConvertRGB32ToYUV_SSE2;
    else
      convert_proc = &ConvertRGB32ToYUV_C;
#endif
  }

  convert_proc(rgbframe, yplane, uplane, vplane, width, height,
               rgbstride, ystride, uvstride);
}

void ConvertRGB24ToYUV(const uint8* rgbframe,
                       uint8* yplane,
                       uint8* uplane,
                       uint8* vplane,
                       int width,
                       int height,
                       int rgbstride,
                       int ystride,
                       int uvstride) {
#if defined(ARCH_CPU_ARM_FAMILY)
  ConvertRGB24ToYUV_C(rgbframe, yplane, uplane, vplane, width, height,
                      rgbstride, ystride, uvstride);
#else
  static void (*convert_proc)(const uint8*, uint8*, uint8*, uint8*,
                              int, int, int, int, int) = NULL;
  if (!convert_proc) {
    if (hasSSSE3())
      convert_proc = &ConvertRGB24ToYUV_SSSE3;
    else
      convert_proc = &ConvertRGB24ToYUV_C;
  }
  convert_proc(rgbframe, yplane, uplane, vplane, width, height,
               rgbstride, ystride, uvstride);
#endif
}

void ConvertYUY2ToYUV(const uint8* src,
                      uint8* yplane,
                      uint8* uplane,
                      uint8* vplane,
                      int width,
                      int height) {
  ConvertYUY2ToYUV_C(src, yplane, uplane, vplane, width, height);
}

void ConvertYUVToRGB32(const uint8* yplane,
                       const uint8* uplane,
                       const uint8* vplane,
                       uint8* rgbframe,
                       int width,
                       int height,
                       int ystride,
                       int uvstride,
                       int rgbstride,
                       YUVType yuv_type) {
#if defined(ARCH_CPU_ARM_FAMILY)
  ConvertYUVToRGB32_C(yplane, uplane, vplane, rgbframe,
                      width, height, ystride, uvstride, rgbstride, yuv_type);
#else
  static ConvertYUVToRGB32Proc convert_proc = NULL;
  if (!convert_proc) {
    if (hasSSE())
      convert_proc = &ConvertYUVToRGB32_SSE;
    else if (hasMMX())
      convert_proc = &ConvertYUVToRGB32_MMX;
    else
      convert_proc = &ConvertYUVToRGB32_C;
  }

  convert_proc(yplane, uplane, vplane, rgbframe,
               width, height, ystride, uvstride, rgbstride, yuv_type);
#endif
}

}  // namespace media