1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This webpage shows layout of YV12 and other YUV formats
// http://www.fourcc.org/yuv.php
// The actual conversion is best described here
// http://en.wikipedia.org/wiki/YUV
// An article on optimizing YUV conversion using tables instead of multiplies
// http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf
//
// YV12 is a full plane of Y and a half height, half width chroma planes
// YV16 is a full plane of Y and a full height, half width chroma planes
//
// ARGB pixel format is output, which on little endian is stored as BGRA.
// The alpha is set to 255, allowing the application to use RGBA or RGB32.
#include "media/base/yuv_convert.h"
// Header for low level row functions.
#include "media/base/yuv_row.h"
#if USE_SSE
#if defined(_MSC_VER)
#include <intrin.h>
#else
#include <emmintrin.h>
#endif
#endif
namespace media {
// 16.16 fixed point arithmetic.
const int kFractionBits = 16;
const int kFractionMax = 1 << kFractionBits;
// Convert a frame of YUV to 32 bit ARGB.
void ConvertYUVToRGB32(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int width,
int height,
int y_pitch,
int uv_pitch,
int rgb_pitch,
YUVType yuv_type) {
unsigned int y_shift = yuv_type;
for (int y = 0; y < height; ++y) {
uint8* rgb_row = rgb_buf + y * rgb_pitch;
const uint8* y_ptr = y_buf + y * y_pitch;
const uint8* u_ptr = u_buf + (y >> y_shift) * uv_pitch;
const uint8* v_ptr = v_buf + (y >> y_shift) * uv_pitch;
FastConvertYUVToRGB32Row(y_ptr,
u_ptr,
v_ptr,
rgb_row,
width);
}
// MMX used for FastConvertYUVToRGB32Row requires emms instruction.
EMMS();
}
// FilterRows combines two rows of the image using linear interpolation.
// 4 pixels are blended at a time.
static void FilterRows(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr,
int width, int scaled_y_fraction) {
#if USE_SSE
__m128i zero = _mm_setzero_si128();
__m128i y1_fraction = _mm_set1_epi16(
static_cast<unsigned short>(scaled_y_fraction >> 8));
__m128i y0_fraction = _mm_set1_epi16(
static_cast<unsigned short>((scaled_y_fraction >> 8) ^ 255));
uint8* end = ybuf + width;
if (ybuf < end) {
do {
__m128i y0 = _mm_loadl_epi64(reinterpret_cast<__m128i const*>(y0_ptr));
__m128i y1 = _mm_loadl_epi64(reinterpret_cast<__m128i const*>(y1_ptr));
y0 = _mm_unpacklo_epi8 (y0, zero);
y1 = _mm_unpacklo_epi8 (y1, zero);
y0 = _mm_mullo_epi16(y0, y0_fraction);
y1 = _mm_mullo_epi16(y1, y1_fraction);
y0 = _mm_add_epi16(y0, y1); // 8.8 fixed point result
y0 = _mm_srli_epi16(y0, 8);
y0 = _mm_packus_epi16(y0, y0);
_mm_storel_epi64(reinterpret_cast<__m128i *>(ybuf), y0);
y0_ptr += 8;
y1_ptr += 8;
ybuf += 8;
} while (ybuf < end);
}
#else
int y0_fraction = kFractionMax - 1 - scaled_y_fraction;
int y1_fraction = scaled_y_fraction;
uint8* end = ybuf + width;
while (ybuf < end) {
ybuf[0] = (y0_ptr[0] * (y0_fraction) +
y1_ptr[0] * (y1_fraction)) >> kFractionBits;
ybuf[1] = (y0_ptr[1] * (y0_fraction) +
y1_ptr[1] * (y1_fraction)) >> kFractionBits;
ybuf[2] = (y0_ptr[2] * (y0_fraction) +
y1_ptr[2] * (y1_fraction)) >> kFractionBits;
ybuf[3] = (y0_ptr[3] * (y0_fraction) +
y1_ptr[3] * (y1_fraction)) >> kFractionBits;
y0_ptr += 4;
y1_ptr += 4;
ybuf += 4;
}
#endif
// Value at |ybuf[width]| must be the same as at |ybuf[width-1]|.
if (width > 1) {
end[0] = end[-1];
}
}
// Scale a frame of YUV to 32 bit ARGB.
void ScaleYUVToRGB32(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int width,
int height,
int scaled_width,
int scaled_height,
int y_pitch,
int uv_pitch,
int rgb_pitch,
YUVType yuv_type,
Rotate view_rotate,
ScaleFilter filter) {
const int kFilterBufferSize = 8192;
// Disable filtering if the screen is too big (to avoid buffer overflows).
// This should never happen to regular users: they don't have monitors
// wider than 8192 pixels.
if (width > kFilterBufferSize)
filter = FILTER_NONE;
unsigned int y_shift = yuv_type;
// Diagram showing origin and direction of source sampling.
// ->0 4<-
// 7 3
//
// 6 5
// ->1 2<-
// Rotations that start at right side of image.
if ((view_rotate == ROTATE_180) ||
(view_rotate == ROTATE_270) ||
(view_rotate == MIRROR_ROTATE_0) ||
(view_rotate == MIRROR_ROTATE_90)) {
y_buf += width - 1;
u_buf += width / 2 - 1;
v_buf += width / 2 - 1;
width = -width;
}
// Rotations that start at bottom of image.
if ((view_rotate == ROTATE_90) ||
(view_rotate == ROTATE_180) ||
(view_rotate == MIRROR_ROTATE_90) ||
(view_rotate == MIRROR_ROTATE_180)) {
y_buf += (height - 1) * y_pitch;
u_buf += ((height >> y_shift) - 1) * uv_pitch;
v_buf += ((height >> y_shift) - 1) * uv_pitch;
height = -height;
}
// Handle zero sized destination.
if (scaled_width == 0 || scaled_height == 0)
return;
int scaled_dx = width * kFractionMax / scaled_width;
int scaled_dy = height * kFractionMax / scaled_height;
int scaled_dx_uv = scaled_dx;
if ((view_rotate == ROTATE_90) ||
(view_rotate == ROTATE_270)) {
int tmp = scaled_height;
scaled_height = scaled_width;
scaled_width = tmp;
tmp = height;
height = width;
width = tmp;
int original_dx = scaled_dx;
int original_dy = scaled_dy;
scaled_dx = ((original_dy >> kFractionBits) * y_pitch) << kFractionBits;
scaled_dx_uv = ((original_dy >> kFractionBits) * uv_pitch) << kFractionBits;
scaled_dy = original_dx;
if (view_rotate == ROTATE_90) {
y_pitch = -1;
uv_pitch = -1;
height = -height;
} else {
y_pitch = 1;
uv_pitch = 1;
}
}
// Need padding in the end because FilterRows() may override up to 7
// pixels after the end.
uint8 ybuf[kFilterBufferSize + 16];
uint8 ubuf[kFilterBufferSize / 2 + 16];
uint8 vbuf[kFilterBufferSize / 2 + 16];
int yscale_fixed = (height << kFractionBits) / scaled_height;
for (int y = 0; y < scaled_height; ++y) {
uint8* dest_pixel = rgb_buf + y * rgb_pitch;
int scaled_y = (y * yscale_fixed);
const uint8* y0_ptr = y_buf + (scaled_y >> kFractionBits) * y_pitch;
const uint8* y1_ptr = y0_ptr + y_pitch;
const uint8* u0_ptr = u_buf +
((scaled_y >> kFractionBits) >> y_shift) * uv_pitch;
const uint8* u1_ptr = u0_ptr + uv_pitch;
const uint8* v0_ptr = v_buf +
((scaled_y >> kFractionBits) >> y_shift) * uv_pitch;
const uint8* v1_ptr = v0_ptr + uv_pitch;
int scaled_y_fraction = scaled_y & (kFractionMax - 1);
int scaled_uv_fraction = (scaled_y >> y_shift) & (kFractionMax - 1);
const uint8* y_ptr = y0_ptr;
const uint8* u_ptr = u0_ptr;
const uint8* v_ptr = v0_ptr;
// TODO(sergeyu): Avoid filtering when fraction is 0.
if (filter == media::FILTER_BILINEAR && y + 1 < scaled_height) {
FilterRows(ybuf, y0_ptr, y1_ptr, width, scaled_y_fraction);
y_ptr = ybuf;
if ((y >> y_shift) + 1 < scaled_height >> y_shift) {
FilterRows(ubuf, u0_ptr, u1_ptr, width / 2, scaled_uv_fraction);
u_ptr = ubuf;
FilterRows(vbuf, v0_ptr, v1_ptr, width / 2, scaled_uv_fraction);
v_ptr = vbuf;
}
}
if (scaled_dx == kFractionMax) { // Not scaled
FastConvertYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
dest_pixel, scaled_width);
} else {
if (filter == FILTER_BILINEAR)
LinearScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
dest_pixel, scaled_width, scaled_dx);
else
ScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
dest_pixel, scaled_width, scaled_dx);
}
}
// MMX used for FastConvertYUVToRGB32Row requires emms instruction.
EMMS();
}
} // namespace media
|