1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This webpage shows layout of YV12 and other YUV formats
// http://www.fourcc.org/yuv.php
// The actual conversion is best described here
// http://en.wikipedia.org/wiki/YUV
// An article on optimizing YUV conversion using tables instead of multiplies
// http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf
//
// YV12 is a full plane of Y and a half height, half width chroma planes
// YV16 is a full plane of Y and a full height, half width chroma planes
//
// ARGB pixel format is output, which on little endian is stored as BGRA.
// The alpha is set to 255, allowing the application to use RGBA or RGB32.
#include "media/base/yuv_convert.h"
// Header for low level row functions.
#include "media/base/yuv_row.h"
namespace media {
// Convert a frame of YUV to 32 bit ARGB.
void ConvertYUVToRGB32(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int width,
int height,
int y_pitch,
int uv_pitch,
int rgb_pitch,
YUVType yuv_type) {
unsigned int y_shift = yuv_type;
for (int y = 0; y < height; ++y) {
uint8* rgb_row = rgb_buf + y * rgb_pitch;
const uint8* y_ptr = y_buf + y * y_pitch;
const uint8* u_ptr = u_buf + (y >> y_shift) * uv_pitch;
const uint8* v_ptr = v_buf + (y >> y_shift) * uv_pitch;
FastConvertYUVToRGB32Row(y_ptr,
u_ptr,
v_ptr,
rgb_row,
width);
}
// MMX used for FastConvertYUVToRGB32Row requires emms instruction.
EMMS();
}
// Scale a frame of YUV to 32 bit ARGB.
void ScaleYUVToRGB32(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int width,
int height,
int scaled_width,
int scaled_height,
int y_pitch,
int uv_pitch,
int rgb_pitch,
YUVType yuv_type,
Rotate view_rotate) {
unsigned int y_shift = yuv_type;
// Diagram showing origin and direction of source sampling.
// ->0 4<-
// 7 3
//
// 6 5
// ->1 2<-
// Rotations that start at right side of image.
if ((view_rotate == ROTATE_180) ||
(view_rotate == ROTATE_270) ||
(view_rotate == MIRROR_ROTATE_0) ||
(view_rotate == MIRROR_ROTATE_90)) {
y_buf += width - 1;
u_buf += width / 2 - 1;
v_buf += width / 2 - 1;
width = -width;
}
// Rotations that start at bottom of image.
if ((view_rotate == ROTATE_90) ||
(view_rotate == ROTATE_180) ||
(view_rotate == MIRROR_ROTATE_90) ||
(view_rotate == MIRROR_ROTATE_180)) {
y_buf += (height - 1) * y_pitch;
u_buf += ((height >> y_shift) - 1) * uv_pitch;
v_buf += ((height >> y_shift) - 1) * uv_pitch;
height = -height;
}
// Handle zero sized destination.
if (scaled_width == 0 || scaled_height == 0)
return;
int scaled_dx = width * 16 / scaled_width;
int scaled_dy = height * 16 / scaled_height;
int scaled_dx_uv = scaled_dx;
if ((view_rotate == ROTATE_90) ||
(view_rotate == ROTATE_270)) {
int tmp = scaled_height;
scaled_height = scaled_width;
scaled_width = tmp;
tmp = height;
height = width;
width = tmp;
int original_dx = scaled_dx;
int original_dy = scaled_dy;
scaled_dx = ((original_dy >> 4) * y_pitch) << 4;
scaled_dx_uv = ((original_dy >> 4) * uv_pitch) << 4;
scaled_dy = original_dx;
if (view_rotate == ROTATE_90) {
y_pitch = -1;
uv_pitch = -1;
height = -height;
} else {
y_pitch = 1;
uv_pitch = 1;
}
}
for (int y = 0; y < scaled_height; ++y) {
uint8* dest_pixel = rgb_buf + y * rgb_pitch;
int scaled_y = (y * height / scaled_height);
const uint8* y_ptr = y_buf + scaled_y * y_pitch;
const uint8* u_ptr = u_buf + (scaled_y >> y_shift) * uv_pitch;
const uint8* v_ptr = v_buf + (scaled_y >> y_shift) * uv_pitch;
#if USE_MMX
if (scaled_width == (width * 2)) {
DoubleYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
dest_pixel, scaled_width);
} else if ((scaled_dx & 15) == 0) { // Scaling by integer scale factor.
if (scaled_dx_uv == scaled_dx) { // Not rotated.
if (scaled_dx == 16) { // Not scaled
FastConvertYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
dest_pixel, scaled_width);
} else { // Simple scale down. ie half
ConvertYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
dest_pixel, scaled_width, scaled_dx >> 4);
}
} else {
RotateConvertYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
dest_pixel, scaled_width,
scaled_dx >> 4, scaled_dx_uv >> 4);
}
#else
if (scaled_dx == 16) { // Not scaled
FastConvertYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
dest_pixel, scaled_width);
#endif
} else {
ScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
dest_pixel, scaled_width, scaled_dx);
}
}
// MMX used for FastConvertYUVToRGB32Row requires emms instruction.
EMMS();
}
} // namespace media
|