1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
|
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stdint.h>
#include "base/test/simple_test_tick_clock.h"
#include "media/cast/cast_defines.h"
#include "media/cast/net/cast_transport_config.h"
#include "media/cast/net/pacing/paced_sender.h"
#include "media/cast/net/rtcp/rtcp.h"
#include "media/cast/test/skewed_tick_clock.h"
#include "testing/gmock/include/gmock/gmock.h"
namespace media {
namespace cast {
using testing::_;
static const uint32 kSenderSsrc = 0x10203;
static const uint32 kReceiverSsrc = 0x40506;
static const int kInitialReceiverClockOffsetSeconds = -5;
class FakeRtcpTransport : public PacedPacketSender {
public:
explicit FakeRtcpTransport(base::SimpleTestTickClock* clock)
: clock_(clock),
packet_delay_(base::TimeDelta::FromMilliseconds(42)) {}
void set_rtcp_destination(Rtcp* rtcp) { rtcp_ = rtcp; }
base::TimeDelta packet_delay() const { return packet_delay_; }
void set_packet_delay(base::TimeDelta delay) { packet_delay_ = delay; }
bool SendRtcpPacket(uint32 ssrc, PacketRef packet) override {
clock_->Advance(packet_delay_);
rtcp_->IncomingRtcpPacket(&packet->data[0], packet->data.size());
return true;
}
bool SendPackets(const SendPacketVector& packets) override { return false; }
bool ResendPackets(const SendPacketVector& packets,
const DedupInfo& dedup_info) override {
return false;
}
void CancelSendingPacket(const PacketKey& packet_key) override {}
private:
base::SimpleTestTickClock* const clock_;
base::TimeDelta packet_delay_;
Rtcp* rtcp_;
DISALLOW_COPY_AND_ASSIGN(FakeRtcpTransport);
};
class MockFrameSender {
public:
MockFrameSender() {}
virtual ~MockFrameSender() {}
MOCK_METHOD1(OnReceivedCastFeedback,
void(const RtcpCastMessage& cast_message));
MOCK_METHOD1(OnMeasuredRoundTripTime, void(base::TimeDelta rtt));
private:
DISALLOW_COPY_AND_ASSIGN(MockFrameSender);
};
class RtcpTest : public ::testing::Test {
protected:
RtcpTest()
: sender_clock_(new base::SimpleTestTickClock()),
receiver_clock_(new test::SkewedTickClock(sender_clock_.get())),
sender_to_receiver_(sender_clock_.get()),
receiver_to_sender_(sender_clock_.get()),
rtcp_for_sender_(base::Bind(&MockFrameSender::OnReceivedCastFeedback,
base::Unretained(&mock_frame_sender_)),
base::Bind(&MockFrameSender::OnMeasuredRoundTripTime,
base::Unretained(&mock_frame_sender_)),
RtcpLogMessageCallback(),
sender_clock_.get(),
&sender_to_receiver_,
kSenderSsrc,
kReceiverSsrc),
rtcp_for_receiver_(RtcpCastMessageCallback(),
RtcpRttCallback(),
RtcpLogMessageCallback(),
receiver_clock_.get(),
&receiver_to_sender_,
kReceiverSsrc,
kSenderSsrc) {
sender_clock_->Advance(base::TimeTicks::Now() - base::TimeTicks());
receiver_clock_->SetSkew(
1.0, // No skew.
base::TimeDelta::FromSeconds(kInitialReceiverClockOffsetSeconds));
sender_to_receiver_.set_rtcp_destination(&rtcp_for_receiver_);
receiver_to_sender_.set_rtcp_destination(&rtcp_for_sender_);
}
~RtcpTest() override {}
scoped_ptr<base::SimpleTestTickClock> sender_clock_;
scoped_ptr<test::SkewedTickClock> receiver_clock_;
FakeRtcpTransport sender_to_receiver_;
FakeRtcpTransport receiver_to_sender_;
MockFrameSender mock_frame_sender_;
Rtcp rtcp_for_sender_;
Rtcp rtcp_for_receiver_;
DISALLOW_COPY_AND_ASSIGN(RtcpTest);
};
TEST_F(RtcpTest, LipSyncGleanedFromSenderReport) {
// Initially, expect no lip-sync info receiver-side without having first
// received a RTCP packet.
base::TimeTicks reference_time;
uint32 rtp_timestamp;
ASSERT_FALSE(rtcp_for_receiver_.GetLatestLipSyncTimes(&rtp_timestamp,
&reference_time));
// Send a Sender Report to the receiver.
const base::TimeTicks reference_time_sent = sender_clock_->NowTicks();
const uint32 rtp_timestamp_sent = 0xbee5;
rtcp_for_sender_.SendRtcpFromRtpSender(
reference_time_sent, rtp_timestamp_sent, 1, 1);
// Now the receiver should have lip-sync info. Confirm that the lip-sync
// reference time is the same as that sent.
EXPECT_TRUE(rtcp_for_receiver_.GetLatestLipSyncTimes(&rtp_timestamp,
&reference_time));
const base::TimeTicks rolled_back_time =
(reference_time -
// Roll-back relative clock offset:
base::TimeDelta::FromSeconds(kInitialReceiverClockOffsetSeconds) -
// Roll-back packet transmission time (because RTT is not yet known):
sender_to_receiver_.packet_delay());
EXPECT_NEAR(0, (reference_time_sent - rolled_back_time).InMicroseconds(), 5);
EXPECT_EQ(rtp_timestamp_sent, rtp_timestamp);
}
// TODO(miu): There were a few tests here that didn't actually test anything
// except that the code wouldn't crash and a callback method was invoked. We
// need to fill-in more testing of RTCP now that much of the refactoring work
// has been completed.
TEST_F(RtcpTest, RoundTripTimesDeterminedFromReportPingPong) {
const int iterations = 12;
EXPECT_CALL(mock_frame_sender_, OnMeasuredRoundTripTime(_))
.Times(iterations);
// Initially, neither side knows the round trip time.
ASSERT_EQ(base::TimeDelta(), rtcp_for_sender_.current_round_trip_time());
ASSERT_EQ(base::TimeDelta(), rtcp_for_receiver_.current_round_trip_time());
// Do a number of ping-pongs, checking how the round trip times are measured
// by the sender and receiver.
base::TimeDelta expected_rtt_according_to_sender;
base::TimeDelta expected_rtt_according_to_receiver;
for (int i = 0; i < iterations; ++i) {
const base::TimeDelta one_way_trip_time =
base::TimeDelta::FromMilliseconds(1 << i);
sender_to_receiver_.set_packet_delay(one_way_trip_time);
receiver_to_sender_.set_packet_delay(one_way_trip_time);
// Sender --> Receiver
base::TimeTicks reference_time_sent = sender_clock_->NowTicks();
uint32 rtp_timestamp_sent = 0xbee5 + i;
rtcp_for_sender_.SendRtcpFromRtpSender(
reference_time_sent, rtp_timestamp_sent, 1, 1);
EXPECT_EQ(expected_rtt_according_to_sender,
rtcp_for_sender_.current_round_trip_time());
#ifdef SENDER_PROVIDES_REPORT_BLOCK
EXPECT_EQ(expected_rtt_according_to_receiver,
rtcp_for_receiver_.current_round_trip_time());
#endif
// Receiver --> Sender
RtpReceiverStatistics stats;
rtcp_for_receiver_.SendRtcpFromRtpReceiver(
rtcp_for_receiver_.ConvertToNTPAndSave(receiver_clock_->NowTicks()),
NULL, base::TimeDelta(), NULL, &stats);
expected_rtt_according_to_sender = one_way_trip_time * 2;
EXPECT_EQ(expected_rtt_according_to_sender,
rtcp_for_sender_.current_round_trip_time());
#ifdef SENDER_PROVIDES_REPORT_BLOCK
EXPECT_EQ(expected_rtt_according_to_receiver,
rtcp_for_receiver_.current_round_trip_time();
#endif
// In the next iteration of this loop, after the receiver gets the sender
// report, it will be measuring a round trip time consisting of two
// different one-way trip times.
expected_rtt_according_to_receiver =
(one_way_trip_time + one_way_trip_time * 2) / 2;
}
}
// TODO(miu): Find a better home for this test.
TEST(MisplacedCastTest, NtpAndTime) {
const int64 kSecondsbetweenYear1900and2010 = INT64_C(40176 * 24 * 60 * 60);
const int64 kSecondsbetweenYear1900and2030 = INT64_C(47481 * 24 * 60 * 60);
uint32 ntp_seconds_1 = 0;
uint32 ntp_fraction_1 = 0;
base::TimeTicks input_time = base::TimeTicks::Now();
ConvertTimeTicksToNtp(input_time, &ntp_seconds_1, &ntp_fraction_1);
// Verify absolute value.
EXPECT_GT(ntp_seconds_1, kSecondsbetweenYear1900and2010);
EXPECT_LT(ntp_seconds_1, kSecondsbetweenYear1900and2030);
base::TimeTicks out_1 = ConvertNtpToTimeTicks(ntp_seconds_1, ntp_fraction_1);
EXPECT_EQ(input_time, out_1); // Verify inverse.
base::TimeDelta time_delta = base::TimeDelta::FromMilliseconds(1000);
input_time += time_delta;
uint32 ntp_seconds_2 = 0;
uint32 ntp_fraction_2 = 0;
ConvertTimeTicksToNtp(input_time, &ntp_seconds_2, &ntp_fraction_2);
base::TimeTicks out_2 = ConvertNtpToTimeTicks(ntp_seconds_2, ntp_fraction_2);
EXPECT_EQ(input_time, out_2); // Verify inverse.
// Verify delta.
EXPECT_EQ((out_2 - out_1), time_delta);
EXPECT_EQ((ntp_seconds_2 - ntp_seconds_1), UINT32_C(1));
EXPECT_NEAR(ntp_fraction_2, ntp_fraction_1, 1);
time_delta = base::TimeDelta::FromMilliseconds(500);
input_time += time_delta;
uint32 ntp_seconds_3 = 0;
uint32 ntp_fraction_3 = 0;
ConvertTimeTicksToNtp(input_time, &ntp_seconds_3, &ntp_fraction_3);
base::TimeTicks out_3 = ConvertNtpToTimeTicks(ntp_seconds_3, ntp_fraction_3);
EXPECT_EQ(input_time, out_3); // Verify inverse.
// Verify delta.
EXPECT_EQ((out_3 - out_2), time_delta);
EXPECT_NEAR((ntp_fraction_3 - ntp_fraction_2), 0xffffffff / 2, 1);
}
} // namespace cast
} // namespace media
|