1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
|
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/cast/rtcp/rtcp.h"
#include "base/big_endian.h"
#include "base/rand_util.h"
#include "media/cast/cast_config.h"
#include "media/cast/cast_defines.h"
#include "media/cast/cast_environment.h"
#include "media/cast/rtcp/rtcp_defines.h"
#include "media/cast/rtcp/rtcp_receiver.h"
#include "media/cast/rtcp/rtcp_sender.h"
#include "media/cast/rtcp/rtcp_utility.h"
#include "media/cast/transport/cast_transport_defines.h"
namespace media {
namespace cast {
static const int kMaxRttMs = 10000; // 10 seconds.
static const uint16 kMaxDelay = 2000;
// Time limit for received RTCP messages when we stop using it for lip-sync.
static const int64 kMaxDiffSinceReceivedRtcpMs = 100000; // 100 seconds.
class LocalRtcpRttFeedback : public RtcpRttFeedback {
public:
explicit LocalRtcpRttFeedback(Rtcp* rtcp) : rtcp_(rtcp) {}
virtual void OnReceivedDelaySinceLastReport(
uint32 receivers_ssrc, uint32 last_report,
uint32 delay_since_last_report) OVERRIDE {
rtcp_->OnReceivedDelaySinceLastReport(receivers_ssrc, last_report,
delay_since_last_report);
}
private:
Rtcp* rtcp_;
};
class LocalRtcpReceiverFeedback : public RtcpReceiverFeedback {
public:
LocalRtcpReceiverFeedback(Rtcp* rtcp,
scoped_refptr<CastEnvironment> cast_environment)
: rtcp_(rtcp), cast_environment_(cast_environment) {}
virtual void OnReceivedSenderReport(
const transport::RtcpSenderInfo& remote_sender_info) OVERRIDE {
rtcp_->OnReceivedNtp(remote_sender_info.ntp_seconds,
remote_sender_info.ntp_fraction);
if (remote_sender_info.send_packet_count != 0) {
rtcp_->OnReceivedLipSyncInfo(remote_sender_info.rtp_timestamp,
remote_sender_info.ntp_seconds,
remote_sender_info.ntp_fraction);
}
}
virtual void OnReceiverReferenceTimeReport(
const RtcpReceiverReferenceTimeReport& remote_time_report) OVERRIDE {
rtcp_->OnReceivedNtp(remote_time_report.ntp_seconds,
remote_time_report.ntp_fraction);
}
virtual void OnReceivedSendReportRequest() OVERRIDE {
rtcp_->OnReceivedSendReportRequest();
}
virtual void OnReceivedReceiverLog(const RtcpReceiverLogMessage& receiver_log)
OVERRIDE {
// Add received log messages into our log system.
RtcpReceiverLogMessage::const_iterator it = receiver_log.begin();
for (; it != receiver_log.end(); ++it) {
uint32 rtp_timestamp = it->rtp_timestamp_;
RtcpReceiverEventLogMessages::const_iterator event_it =
it->event_log_messages_.begin();
for (; event_it != it->event_log_messages_.end(); ++event_it) {
switch (event_it->type) {
case kAudioPacketReceived:
case kVideoPacketReceived:
case kDuplicateAudioPacketReceived:
case kDuplicateVideoPacketReceived:
cast_environment_->Logging()->InsertPacketEvent(
event_it->event_timestamp, event_it->type, rtp_timestamp,
kFrameIdUnknown, event_it->packet_id, 0, 0);
break;
case kAudioAckSent:
case kVideoAckSent:
case kAudioFrameDecoded:
case kVideoFrameDecoded:
cast_environment_->Logging()->InsertFrameEvent(
event_it->event_timestamp, event_it->type, rtp_timestamp,
kFrameIdUnknown);
break;
case kAudioPlayoutDelay:
case kVideoRenderDelay:
cast_environment_->Logging()->InsertFrameEventWithDelay(
event_it->event_timestamp, event_it->type, rtp_timestamp,
kFrameIdUnknown, event_it->delay_delta);
break;
default:
VLOG(2) << "Received log message via RTCP that we did not expect: "
<< static_cast<int>(event_it->type);
break;
}
}
}
}
virtual void OnReceivedSenderLog(
const transport::RtcpSenderLogMessage& sender_log) OVERRIDE {
transport::RtcpSenderLogMessage::const_iterator it = sender_log.begin();
for (; it != sender_log.end(); ++it) {
uint32 rtp_timestamp = it->rtp_timestamp;
CastLoggingEvent log_event = kUnknown;
// These events are provided to know the status of frames that never
// reached the receiver. The timing information for these events are not
// relevant and is not sent over the wire.
switch (it->frame_status) {
case transport::kRtcpSenderFrameStatusDroppedByFlowControl:
// A frame that have been dropped by the flow control would have
// kVideoFrameCaptured as its last event in the log.
log_event = kVideoFrameCaptured;
break;
case transport::kRtcpSenderFrameStatusDroppedByEncoder:
// A frame that have been dropped by the encoder would have
// kVideoFrameSentToEncoder as its last event in the log.
log_event = kVideoFrameSentToEncoder;
break;
case transport::kRtcpSenderFrameStatusSentToNetwork:
// A frame that have be encoded is always sent to the network. We
// do not add a new log entry for this.
log_event = kVideoFrameEncoded;
break;
default:
continue;
}
// TODO(pwestin): how do we handle the truncated rtp_timestamp?
// Add received log messages into our log system.
// TODO(pwestin): how do we handle the time? we don't care about it but
// we need to send in one.
base::TimeTicks now = cast_environment_->Clock()->NowTicks();
cast_environment_->Logging()->InsertFrameEvent(
now, log_event, rtp_timestamp, kFrameIdUnknown);
}
}
private:
Rtcp* rtcp_;
scoped_refptr<CastEnvironment> cast_environment_;
};
Rtcp::Rtcp(scoped_refptr<CastEnvironment> cast_environment,
RtcpSenderFeedback* sender_feedback,
transport::CastTransportSender* const transport_sender,
transport::PacedPacketSender* paced_packet_sender,
RtpReceiverStatistics* rtp_receiver_statistics, RtcpMode rtcp_mode,
const base::TimeDelta& rtcp_interval, uint32 local_ssrc,
uint32 remote_ssrc, const std::string& c_name)
: cast_environment_(cast_environment),
transport_sender_(transport_sender),
rtcp_interval_(rtcp_interval),
rtcp_mode_(rtcp_mode),
local_ssrc_(local_ssrc),
remote_ssrc_(remote_ssrc),
c_name_(c_name),
rtp_receiver_statistics_(rtp_receiver_statistics),
rtt_feedback_(new LocalRtcpRttFeedback(this)),
receiver_feedback_(new LocalRtcpReceiverFeedback(this, cast_environment)),
rtcp_sender_(new RtcpSender(cast_environment, paced_packet_sender,
local_ssrc, c_name)),
last_report_received_(0),
last_received_rtp_timestamp_(0),
last_received_ntp_seconds_(0),
last_received_ntp_fraction_(0),
min_rtt_(base::TimeDelta::FromMilliseconds(kMaxRttMs)),
number_of_rtt_in_avg_(0) {
rtcp_receiver_.reset(new RtcpReceiver(cast_environment, sender_feedback,
receiver_feedback_.get(),
rtt_feedback_.get(), local_ssrc));
rtcp_receiver_->SetRemoteSSRC(remote_ssrc);
}
Rtcp::~Rtcp() {}
// static
bool Rtcp::IsRtcpPacket(const uint8* packet, size_t length) {
DCHECK_GE(length, kMinLengthOfRtcp) << "Invalid RTCP packet";
if (length < kMinLengthOfRtcp) return false;
uint8 packet_type = packet[1];
if (packet_type >= transport::kPacketTypeLow &&
packet_type <= transport::kPacketTypeHigh) {
return true;
}
return false;
}
// static
uint32 Rtcp::GetSsrcOfSender(const uint8* rtcp_buffer, size_t length) {
DCHECK_GE(length, kMinLengthOfRtcp) << "Invalid RTCP packet";
uint32 ssrc_of_sender;
base::BigEndianReader big_endian_reader(
reinterpret_cast<const char*>(rtcp_buffer), length);
big_endian_reader.Skip(4); // Skip header
big_endian_reader.ReadU32(&ssrc_of_sender);
return ssrc_of_sender;
}
base::TimeTicks Rtcp::TimeToSendNextRtcpReport() {
if (next_time_to_send_rtcp_.is_null()) {
UpdateNextTimeToSendRtcp();
}
return next_time_to_send_rtcp_;
}
void Rtcp::IncomingRtcpPacket(const uint8* rtcp_buffer, size_t length) {
RtcpParser rtcp_parser(rtcp_buffer, length);
if (!rtcp_parser.IsValid()) {
// Silently ignore packet.
DLOG(ERROR) << "Received invalid RTCP packet";
return;
}
rtcp_receiver_->IncomingRtcpPacket(&rtcp_parser);
}
void Rtcp::SendRtcpFromRtpReceiver(
const RtcpCastMessage* cast_message,
const ReceiverRtcpEventSubscriber* event_subscriber) {
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
uint32 packet_type_flags = 0;
base::TimeTicks now = cast_environment_->Clock()->NowTicks();
transport::RtcpReportBlock report_block;
RtcpReceiverReferenceTimeReport rrtr;
// Attach our NTP to all RTCP packets; with this information a "smart" sender
// can make decisions based on how old the RTCP message is.
packet_type_flags |= transport::kRtcpRrtr;
ConvertTimeTicksToNtp(now, &rrtr.ntp_seconds, &rrtr.ntp_fraction);
SaveLastSentNtpTime(now, rrtr.ntp_seconds, rrtr.ntp_fraction);
if (cast_message) {
packet_type_flags |= transport::kRtcpCast;
}
if (event_subscriber) {
packet_type_flags |= transport::kRtcpReceiverLog;
}
if (rtcp_mode_ == kRtcpCompound || now >= next_time_to_send_rtcp_) {
packet_type_flags |= transport::kRtcpRr;
report_block.remote_ssrc = 0; // Not needed to set send side.
report_block.media_ssrc = remote_ssrc_; // SSRC of the RTP packet sender.
if (rtp_receiver_statistics_) {
rtp_receiver_statistics_->GetStatistics(
&report_block.fraction_lost, &report_block.cumulative_lost,
&report_block.extended_high_sequence_number, &report_block.jitter);
cast_environment_->Logging()->InsertGenericEvent(now, kJitterMs,
report_block.jitter);
cast_environment_->Logging()->InsertGenericEvent(
now, kPacketLoss, report_block.fraction_lost);
}
report_block.last_sr = last_report_received_;
if (!time_last_report_received_.is_null()) {
uint32 delay_seconds = 0;
uint32 delay_fraction = 0;
base::TimeDelta delta = now - time_last_report_received_;
ConvertTimeToFractions(delta.InMicroseconds(), &delay_seconds,
&delay_fraction);
report_block.delay_since_last_sr =
ConvertToNtpDiff(delay_seconds, delay_fraction);
} else {
report_block.delay_since_last_sr = 0;
}
UpdateNextTimeToSendRtcp();
}
rtcp_sender_->SendRtcpFromRtpReceiver(
packet_type_flags, &report_block, &rrtr, cast_message, event_subscriber,
target_delay_ms_);
}
void Rtcp::SendRtcpFromRtpSender(
const transport::RtcpSenderLogMessage& sender_log_message,
transport::RtcpSenderInfo sender_info) {
DCHECK(transport_sender_);
uint32 packet_type_flags = transport::kRtcpSr;
base::TimeTicks now = cast_environment_->Clock()->NowTicks();
if (sender_log_message.size()) {
packet_type_flags |= transport::kRtcpSenderLog;
}
SaveLastSentNtpTime(now, sender_info.ntp_seconds, sender_info.ntp_fraction);
transport::RtcpDlrrReportBlock dlrr;
if (!time_last_report_received_.is_null()) {
packet_type_flags |= transport::kRtcpDlrr;
dlrr.last_rr = last_report_received_;
uint32 delay_seconds = 0;
uint32 delay_fraction = 0;
base::TimeDelta delta = now - time_last_report_received_;
ConvertTimeToFractions(delta.InMicroseconds(), &delay_seconds,
&delay_fraction);
dlrr.delay_since_last_rr = ConvertToNtpDiff(delay_seconds, delay_fraction);
}
transport_sender_->SendRtcpFromRtpSender(
packet_type_flags, sender_info, dlrr, sender_log_message, local_ssrc_,
c_name_);
UpdateNextTimeToSendRtcp();
}
void Rtcp::OnReceivedNtp(uint32 ntp_seconds, uint32 ntp_fraction) {
last_report_received_ = (ntp_seconds << 16) + (ntp_fraction >> 16);
base::TimeTicks now = cast_environment_->Clock()->NowTicks();
time_last_report_received_ = now;
}
void Rtcp::OnReceivedLipSyncInfo(uint32 rtp_timestamp, uint32 ntp_seconds,
uint32 ntp_fraction) {
last_received_rtp_timestamp_ = rtp_timestamp;
last_received_ntp_seconds_ = ntp_seconds;
last_received_ntp_fraction_ = ntp_fraction;
}
void Rtcp::OnReceivedSendReportRequest() {
base::TimeTicks now = cast_environment_->Clock()->NowTicks();
// Trigger a new RTCP report at next timer.
next_time_to_send_rtcp_ = now;
}
bool Rtcp::RtpTimestampInSenderTime(int frequency, uint32 rtp_timestamp,
base::TimeTicks* rtp_timestamp_in_ticks)
const {
if (last_received_ntp_seconds_ == 0)
return false;
int wrap = CheckForWrapAround(rtp_timestamp, last_received_rtp_timestamp_);
int64 rtp_timestamp_int64 = rtp_timestamp;
int64 last_received_rtp_timestamp_int64 = last_received_rtp_timestamp_;
if (wrap == 1) {
rtp_timestamp_int64 += (1LL << 32);
} else if (wrap == -1) {
last_received_rtp_timestamp_int64 += (1LL << 32);
}
// Time since the last RTCP message.
// Note that this can be negative since we can compare a rtp timestamp from
// a frame older than the last received RTCP message.
int64 rtp_timestamp_diff =
rtp_timestamp_int64 - last_received_rtp_timestamp_int64;
int frequency_khz = frequency / 1000;
int64 rtp_time_diff_ms = rtp_timestamp_diff / frequency_khz;
// Sanity check.
if (std::abs(rtp_time_diff_ms) > kMaxDiffSinceReceivedRtcpMs)
return false;
*rtp_timestamp_in_ticks = ConvertNtpToTimeTicks(last_received_ntp_seconds_,
last_received_ntp_fraction_) +
base::TimeDelta::FromMilliseconds(rtp_time_diff_ms);
return true;
}
void Rtcp::SetCastReceiverEventHistorySize(size_t size) {
rtcp_receiver_->SetCastReceiverEventHistorySize(size);
}
void Rtcp::SetTargetDelay(base::TimeDelta target_delay) {
target_delay_ms_ = static_cast<uint16>(target_delay.InMilliseconds());
DCHECK(target_delay_ms_ < kMaxDelay);
}
void Rtcp::OnReceivedDelaySinceLastReport(uint32 receivers_ssrc,
uint32 last_report,
uint32 delay_since_last_report) {
RtcpSendTimeMap::iterator it = last_reports_sent_map_.find(last_report);
if (it == last_reports_sent_map_.end()) {
return; // Feedback on another report.
}
base::TimeDelta sender_delay =
cast_environment_->Clock()->NowTicks() - it->second;
UpdateRtt(sender_delay, ConvertFromNtpDiff(delay_since_last_report));
}
void Rtcp::SaveLastSentNtpTime(const base::TimeTicks& now,
uint32 last_ntp_seconds,
uint32 last_ntp_fraction) {
// Make sure |now| is always greater than the last element in
// |last_reports_sent_queue_|.
if (!last_reports_sent_queue_.empty())
DCHECK(now >= last_reports_sent_queue_.back().second);
uint32 last_report = ConvertToNtpDiff(last_ntp_seconds, last_ntp_fraction);
last_reports_sent_map_[last_report] = now;
last_reports_sent_queue_.push(std::make_pair(last_report, now));
base::TimeTicks timeout = now - base::TimeDelta::FromMilliseconds(kMaxRttMs);
// Cleanup old statistics older than |timeout|.
while (!last_reports_sent_queue_.empty()) {
RtcpSendTimePair oldest_report = last_reports_sent_queue_.front();
if (oldest_report.second < timeout) {
last_reports_sent_map_.erase(oldest_report.first);
last_reports_sent_queue_.pop();
} else {
break;
}
}
}
void Rtcp::UpdateRtt(const base::TimeDelta& sender_delay,
const base::TimeDelta& receiver_delay) {
base::TimeDelta rtt = sender_delay - receiver_delay;
rtt = std::max(rtt, base::TimeDelta::FromMilliseconds(1));
rtt_ = rtt;
min_rtt_ = std::min(min_rtt_, rtt);
max_rtt_ = std::max(max_rtt_, rtt);
if (number_of_rtt_in_avg_ != 0) {
float ac = static_cast<float>(number_of_rtt_in_avg_);
avg_rtt_ms_ = ((ac / (ac + 1.0)) * avg_rtt_ms_) +
((1.0 / (ac + 1.0)) * rtt.InMilliseconds());
} else {
avg_rtt_ms_ = rtt.InMilliseconds();
}
number_of_rtt_in_avg_++;
}
bool Rtcp::Rtt(base::TimeDelta* rtt, base::TimeDelta* avg_rtt,
base::TimeDelta* min_rtt, base::TimeDelta* max_rtt) const {
DCHECK(rtt) << "Invalid argument";
DCHECK(avg_rtt) << "Invalid argument";
DCHECK(min_rtt) << "Invalid argument";
DCHECK(max_rtt) << "Invalid argument";
if (number_of_rtt_in_avg_ == 0) return false;
base::TimeTicks now = cast_environment_->Clock()->NowTicks();
cast_environment_->Logging()->InsertGenericEvent(now, kRttMs,
rtt->InMilliseconds());
*rtt = rtt_;
*avg_rtt = base::TimeDelta::FromMilliseconds(avg_rtt_ms_);
*min_rtt = min_rtt_;
*max_rtt = max_rtt_;
return true;
}
int Rtcp::CheckForWrapAround(uint32 new_timestamp, uint32 old_timestamp) const {
if (new_timestamp < old_timestamp) {
// This difference should be less than -2^31 if we have had a wrap around
// (e.g. |new_timestamp| = 1, |rtcp_rtp_timestamp| = 2^32 - 1). Since it is
// cast to a int32_t, it should be positive.
if (static_cast<int32>(new_timestamp - old_timestamp) > 0) {
return 1; // Forward wrap around.
}
} else if (static_cast<int32>(old_timestamp - new_timestamp) > 0) {
// This difference should be less than -2^31 if we have had a backward wrap
// around. Since it is cast to a int32, it should be positive.
return -1;
}
return 0;
}
void Rtcp::UpdateNextTimeToSendRtcp() {
int random = base::RandInt(0, 999);
base::TimeDelta time_to_next =
(rtcp_interval_ / 2) + (rtcp_interval_ * random / 1000);
base::TimeTicks now = cast_environment_->Clock()->NowTicks();
next_time_to_send_rtcp_ = now + time_to_next;
}
} // namespace cast
} // namespace media
|