summaryrefslogtreecommitdiffstats
path: root/media/cast/sender/congestion_control.cc
blob: d14f9b08f3736c6234631ebf78e5f9cbfc7b11f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// The purpose of this file is determine what bitrate to use for mirroring.
// Ideally this should be as much as possible, without causing any frames to
// arrive late.

// The current algorithm is to measure how much bandwidth we've been using
// recently. We also keep track of how much data has been queued up for sending
// in a virtual "buffer" (this virtual buffer represents all the buffers between
// the sender and the receiver, including retransmissions and so forth.)
// If we estimate that our virtual buffer is mostly empty, we try to use
// more bandwidth than our recent usage, otherwise we use less.

#include "media/cast/sender/congestion_control.h"

#include "base/logging.h"
#include "media/cast/cast_config.h"
#include "media/cast/cast_defines.h"

namespace media {
namespace cast {

class AdaptiveCongestionControl : public CongestionControl {
 public:
  AdaptiveCongestionControl(base::TickClock* clock,
                            uint32 max_bitrate_configured,
                            uint32 min_bitrate_configured,
                            double max_frame_rate);

  ~AdaptiveCongestionControl() override;

  void UpdateRtt(base::TimeDelta rtt) override;

  void UpdateTargetPlayoutDelay(base::TimeDelta delay) override;

  // Called when an encoded frame is sent to the transport.
  void SendFrameToTransport(uint32 frame_id,
                            size_t frame_size,
                            base::TimeTicks when) override;

  // Called when we receive an ACK for a frame.
  void AckFrame(uint32 frame_id, base::TimeTicks when) override;

  // Returns the bitrate we should use for the next frame.
  uint32 GetBitrate(base::TimeTicks playout_time,
                    base::TimeDelta playout_delay) override;

 private:
  struct FrameStats {
    FrameStats();
    // Time this frame was sent to the transport.
    base::TimeTicks sent_time;
    // Time this frame was acked.
    base::TimeTicks ack_time;
    // Size of encoded frame in bits.
    size_t frame_size;
  };

  // Calculate how much "dead air" (idle time) there is between two frames.
  static base::TimeDelta DeadTime(const FrameStats& a, const FrameStats& b);
  // Get the FrameStats for a given |frame_id|.
  // Note: Older FrameStats will be removed automatically.
  FrameStats* GetFrameStats(uint32 frame_id);
  // Discard old FrameStats.
  void PruneFrameStats();
  // Calculate a safe bitrate. This is based on how much we've been
  // sending in the past.
  double CalculateSafeBitrate();

  // For a given frame, calculate when it might be acked.
  // (Or return the time it was acked, if it was.)
  base::TimeTicks EstimatedAckTime(uint32 frame_id, double bitrate);
  // Calculate when we start sending the data for a given frame.
  // This is done by calculating when we were done sending the previous
  // frame, but obviously can't be less than |sent_time| (if known).
  base::TimeTicks EstimatedSendingTime(uint32 frame_id, double bitrate);

  base::TickClock* const clock_;  // Not owned by this class.
  const uint32 max_bitrate_configured_;
  const uint32 min_bitrate_configured_;
  const double max_frame_rate_;
  std::deque<FrameStats> frame_stats_;
  uint32 last_frame_stats_;
  uint32 last_acked_frame_;
  uint32 last_encoded_frame_;
  base::TimeDelta rtt_;
  size_t history_size_;
  size_t acked_bits_in_history_;
  base::TimeDelta dead_time_in_history_;

  DISALLOW_COPY_AND_ASSIGN(AdaptiveCongestionControl);
};

class FixedCongestionControl : public CongestionControl {
 public:
  FixedCongestionControl(uint32 bitrate) : bitrate_(bitrate) {}
  ~FixedCongestionControl() override {}

  void UpdateRtt(base::TimeDelta rtt) override {}

  void UpdateTargetPlayoutDelay(base::TimeDelta delay) override {}

  // Called when an encoded frame is sent to the transport.
  void SendFrameToTransport(uint32 frame_id,
                            size_t frame_size,
                            base::TimeTicks when) override {}

  // Called when we receive an ACK for a frame.
  void AckFrame(uint32 frame_id, base::TimeTicks when) override {}

  // Returns the bitrate we should use for the next frame.
  uint32 GetBitrate(base::TimeTicks playout_time,
                    base::TimeDelta playout_delay) override {
    return bitrate_;
  }

 private:
  uint32 bitrate_;
  DISALLOW_COPY_AND_ASSIGN(FixedCongestionControl);
};


CongestionControl* NewAdaptiveCongestionControl(
    base::TickClock* clock,
    uint32 max_bitrate_configured,
    uint32 min_bitrate_configured,
    double max_frame_rate) {
  return new AdaptiveCongestionControl(clock,
                                       max_bitrate_configured,
                                       min_bitrate_configured,
                                       max_frame_rate);
}

CongestionControl* NewFixedCongestionControl(uint32 bitrate) {
  return new FixedCongestionControl(bitrate);
}

// This means that we *try* to keep our buffer 90% empty.
// If it is less full, we increase the bandwidth, if it is more
// we decrease the bandwidth. Making this smaller makes the
// congestion control more aggressive.
static const double kTargetEmptyBufferFraction = 0.9;

// This is the size of our history in frames. Larger values makes the
// congestion control adapt slower.
static const size_t kHistorySize = 100;

AdaptiveCongestionControl::FrameStats::FrameStats() : frame_size(0) {
}

AdaptiveCongestionControl::AdaptiveCongestionControl(
    base::TickClock* clock,
    uint32 max_bitrate_configured,
    uint32 min_bitrate_configured,
    double max_frame_rate)
    : clock_(clock),
      max_bitrate_configured_(max_bitrate_configured),
      min_bitrate_configured_(min_bitrate_configured),
      max_frame_rate_(max_frame_rate),
      last_frame_stats_(static_cast<uint32>(-1)),
      last_acked_frame_(static_cast<uint32>(-1)),
      last_encoded_frame_(static_cast<uint32>(-1)),
      history_size_(kHistorySize),
      acked_bits_in_history_(0) {
  DCHECK_GE(max_bitrate_configured, min_bitrate_configured) << "Invalid config";
  frame_stats_.resize(2);
  base::TimeTicks now = clock->NowTicks();
  frame_stats_[0].ack_time = now;
  frame_stats_[0].sent_time = now;
  frame_stats_[1].ack_time = now;
  DCHECK(!frame_stats_[0].ack_time.is_null());
}

CongestionControl::~CongestionControl() {}
AdaptiveCongestionControl::~AdaptiveCongestionControl() {}

void AdaptiveCongestionControl::UpdateRtt(base::TimeDelta rtt) {
  rtt_ = (7 * rtt_ + rtt) / 8;
}

void AdaptiveCongestionControl::UpdateTargetPlayoutDelay(
    base::TimeDelta delay) {
  const int max_unacked_frames =
      std::min(kMaxUnackedFrames,
               1 + static_cast<int>(delay * max_frame_rate_ /
                                    base::TimeDelta::FromSeconds(1)));
  DCHECK_GT(max_unacked_frames, 0);
  history_size_ = max_unacked_frames + kHistorySize;
  PruneFrameStats();
}

// Calculate how much "dead air" there is between two frames.
base::TimeDelta AdaptiveCongestionControl::DeadTime(const FrameStats& a,
                                                    const FrameStats& b) {
  if (b.sent_time > a.ack_time) {
    return b.sent_time - a.ack_time;
  } else {
    return base::TimeDelta();
  }
}

double AdaptiveCongestionControl::CalculateSafeBitrate() {
  double transmit_time =
      (GetFrameStats(last_acked_frame_)->ack_time -
       frame_stats_.front().sent_time - dead_time_in_history_).InSecondsF();

  if (acked_bits_in_history_ == 0 || transmit_time <= 0.0) {
    return min_bitrate_configured_;
  }
  return acked_bits_in_history_ / std::max(transmit_time, 1E-3);
}

AdaptiveCongestionControl::FrameStats*
AdaptiveCongestionControl::GetFrameStats(uint32 frame_id) {
  int32 offset = static_cast<int32>(frame_id - last_frame_stats_);
  DCHECK_LT(offset, static_cast<int32>(kHistorySize));
  if (offset > 0) {
    frame_stats_.resize(frame_stats_.size() + offset);
    last_frame_stats_ += offset;
    offset = 0;
  }
  PruneFrameStats();
  offset += frame_stats_.size() - 1;
  if (offset < 0 || offset >= static_cast<int32>(frame_stats_.size())) {
    return NULL;
  }
  return &frame_stats_[offset];
}

void AdaptiveCongestionControl::PruneFrameStats() {
 while (frame_stats_.size() > history_size_) {
    DCHECK_GT(frame_stats_.size(), 1UL);
    DCHECK(!frame_stats_[0].ack_time.is_null());
    acked_bits_in_history_ -= frame_stats_[0].frame_size;
    dead_time_in_history_ -= DeadTime(frame_stats_[0], frame_stats_[1]);
    DCHECK_GE(acked_bits_in_history_, 0UL);
    VLOG(2) << "DT: " << dead_time_in_history_.InSecondsF();
    DCHECK_GE(dead_time_in_history_.InSecondsF(), 0.0);
    frame_stats_.pop_front();
  }
}

void AdaptiveCongestionControl::AckFrame(uint32 frame_id,
                                         base::TimeTicks when) {
  FrameStats* frame_stats = GetFrameStats(last_acked_frame_);
  while (IsNewerFrameId(frame_id, last_acked_frame_)) {
    FrameStats* last_frame_stats = frame_stats;
    frame_stats = GetFrameStats(last_acked_frame_ + 1);
    DCHECK(frame_stats);
    if (frame_stats->sent_time.is_null()) {
      // Can't ack a frame that hasn't been sent yet.
      return;
    }
    last_acked_frame_++;
    if (when < frame_stats->sent_time)
      when = frame_stats->sent_time;

    frame_stats->ack_time = when;
    acked_bits_in_history_ += frame_stats->frame_size;
    dead_time_in_history_ += DeadTime(*last_frame_stats, *frame_stats);
  }
}

void AdaptiveCongestionControl::SendFrameToTransport(uint32 frame_id,
                                                     size_t frame_size,
                                                     base::TimeTicks when) {
  last_encoded_frame_ = frame_id;
  FrameStats* frame_stats = GetFrameStats(frame_id);
  DCHECK(frame_stats);
  frame_stats->frame_size = frame_size;
  frame_stats->sent_time = when;
}

base::TimeTicks AdaptiveCongestionControl::EstimatedAckTime(uint32 frame_id,
                                                            double bitrate) {
  FrameStats* frame_stats = GetFrameStats(frame_id);
  DCHECK(frame_stats);
  if (frame_stats->ack_time.is_null()) {
    DCHECK(frame_stats->frame_size) << "frame_id: " << frame_id;
    base::TimeTicks ret = EstimatedSendingTime(frame_id, bitrate);
    ret += base::TimeDelta::FromSecondsD(frame_stats->frame_size / bitrate);
    ret += rtt_;
    base::TimeTicks now = clock_->NowTicks();
    if (ret < now) {
      // This is a little counter-intuitive, but it seems to work.
      // Basically, when we estimate that the ACK should have already happened,
      // we figure out how long ago it should have happened and guess that the
      // ACK will happen half of that time in the future. This will cause some
      // over-estimation when acks are late, which is actually what we want.
      return now + (now - ret) / 2;
    } else {
      return ret;
    }
  } else {
    return frame_stats->ack_time;
  }
}

base::TimeTicks AdaptiveCongestionControl::EstimatedSendingTime(
    uint32 frame_id,
    double bitrate) {
  FrameStats* frame_stats = GetFrameStats(frame_id);
  DCHECK(frame_stats);
  base::TimeTicks ret = EstimatedAckTime(frame_id - 1, bitrate) - rtt_;
  if (frame_stats->sent_time.is_null()) {
    // Not sent yet, but we can't start sending it in the past.
    return std::max(ret, clock_->NowTicks());
  } else {
    return std::max(ret, frame_stats->sent_time);
  }
}

uint32 AdaptiveCongestionControl::GetBitrate(base::TimeTicks playout_time,
                                             base::TimeDelta playout_delay) {
  double safe_bitrate = CalculateSafeBitrate();
  // Estimate when we might start sending the next frame.
  base::TimeDelta time_to_catch_up =
      playout_time -
      EstimatedSendingTime(last_encoded_frame_ + 1, safe_bitrate);

  double empty_buffer_fraction =
      time_to_catch_up.InSecondsF() / playout_delay.InSecondsF();
  empty_buffer_fraction = std::min(empty_buffer_fraction, 1.0);
  empty_buffer_fraction = std::max(empty_buffer_fraction, 0.0);

  uint32 bits_per_second = static_cast<uint32>(
      safe_bitrate * empty_buffer_fraction / kTargetEmptyBufferFraction);
  VLOG(3) << " FBR:" << (bits_per_second / 1E6)
          << " EBF:" << empty_buffer_fraction
          << " SBR:" << (safe_bitrate / 1E6);
  bits_per_second = std::max(bits_per_second, min_bitrate_configured_);
  bits_per_second = std::min(bits_per_second, max_bitrate_configured_);
  return bits_per_second;
}

}  // namespace cast
}  // namespace media