1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
|
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// This test generate synthetic data. For audio it's a sinusoid waveform with
// frequency kSoundFrequency and different amplitudes. For video it's a pattern
// that is shifting by one pixel per frame, each pixels neighbors right and down
// is this pixels value +1, since the pixel value is 8 bit it will wrap
// frequently within the image. Visually this will create diagonally color bands
// that moves across the screen
#include <math.h>
#include <list>
#include "base/bind.h"
#include "base/test/simple_test_tick_clock.h"
#include "base/time/tick_clock.h"
#include "media/cast/cast_config.h"
#include "media/cast/cast_environment.h"
#include "media/cast/cast_receiver.h"
#include "media/cast/cast_sender.h"
#include "media/cast/test/fake_task_runner.h"
#include "media/cast/test/video_utility.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace media {
namespace cast {
// Since our time is based on year 1600 and NTP is based on year 1900 we must
// initialize our fake clock to at least 300 year passed year 1600.
static const int64 kStartMillisecond = GG_INT64_C(12345678900000);
static const int kAudioChannels = 2;
static const int kAudioSamplingFrequency = 48000;
static const int kSoundFrequency = 1234; // Frequency of sinusoid wave.
static const int kVideoWidth = 1280;
static const int kVideoHeight = 720;
static const int kCommonRtpHeaderLength = 12;
static const uint8 kCastReferenceFrameIdBitReset = 0xDF; // Mask is 0x40.
// Since the video encoded and decoded an error will be introduced; when
// comparing individual pixels the error can be quite large; we allow a PSNR of
// at least |kVideoAcceptedPSNR|.
static const double kVideoAcceptedPSNR = 38.0;
// The tests are commonly implemented with |kFrameTimerMs| RunTask function;
// a normal video is 30 fps hence the 33 ms between frames.
static const int kFrameTimerMs = 33;
// The packets pass through the pacer which can delay the beginning of the
// frame by 10 ms if there is packets belonging to the previous frame being
// retransmitted.
static const int kTimerErrorMs = 11;
// Class that sends the packet direct from sender into the receiver with the
// ability to drop packets between the two.
class LoopBackTransport : public PacketSender {
public:
explicit LoopBackTransport(scoped_refptr<CastEnvironment> cast_environment)
: packet_receiver_(NULL),
send_packets_(true),
drop_packets_belonging_to_odd_frames_(false),
reset_reference_frame_id_(false),
cast_environment_(cast_environment) {
}
void RegisterPacketReceiver(PacketReceiver* packet_receiver) {
DCHECK(packet_receiver);
packet_receiver_ = packet_receiver;
}
virtual bool SendPacket(const Packet& packet) OVERRIDE {
DCHECK(packet_receiver_);
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
if (!send_packets_) return false;
uint8* packet_copy = new uint8[packet.size()];
memcpy(packet_copy, packet.data(), packet.size());
packet_receiver_->ReceivedPacket(packet_copy, packet.size(),
base::Bind(PacketReceiver::DeletePacket, packet_copy));
return true;
}
virtual bool SendPackets(const PacketList& packets) OVERRIDE {
DCHECK(packet_receiver_);
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
if (!send_packets_) return false;
for (size_t i = 0; i < packets.size(); ++i) {
const Packet& packet = packets[i];
if (drop_packets_belonging_to_odd_frames_) {
uint8 frame_id = packet[13];
if (frame_id % 2 == 1) continue;
}
uint8* packet_copy = new uint8[packet.size()];
memcpy(packet_copy, packet.data(), packet.size());
if (reset_reference_frame_id_) {
// Reset the is_reference bit in the cast header.
packet_copy[kCommonRtpHeaderLength] &= kCastReferenceFrameIdBitReset;
}
packet_receiver_->ReceivedPacket(packet_copy, packet.size(),
base::Bind(PacketReceiver::DeletePacket, packet_copy));
}
return true;
}
void SetSendPackets(bool send_packets) {
send_packets_ = send_packets;
}
void DropAllPacketsBelongingToOddFrames() {
drop_packets_belonging_to_odd_frames_ = true;
}
void AlwaysResetReferenceFrameId() {
reset_reference_frame_id_ = true;
}
private:
PacketReceiver* packet_receiver_;
bool send_packets_;
bool drop_packets_belonging_to_odd_frames_;
bool reset_reference_frame_id_;
scoped_refptr<CastEnvironment> cast_environment_;
};
// Class that verifies the audio frames coming out of the receiver.
class TestReceiverAudioCallback :
public base::RefCountedThreadSafe<TestReceiverAudioCallback> {
public:
struct ExpectedAudioFrame {
PcmAudioFrame audio_frame;
int num_10ms_blocks;
base::TimeTicks record_time;
};
TestReceiverAudioCallback()
: num_called_(0),
avg_snr_(0) {}
void SetExpectedResult(int expected_sampling_frequency,
int expected_min_snr,
int expected_avg_snr) {
expected_sampling_frequency_ = expected_sampling_frequency;
expected_min_snr_ = expected_min_snr;
expected_avg_snr_ = expected_avg_snr;
}
void AddExpectedResult(PcmAudioFrame* audio_frame,
int expected_num_10ms_blocks,
const base::TimeTicks& record_time) {
ExpectedAudioFrame expected_audio_frame;
expected_audio_frame.audio_frame = *audio_frame;
expected_audio_frame.num_10ms_blocks = expected_num_10ms_blocks;
expected_audio_frame.record_time = record_time;
expected_frame_.push_back(expected_audio_frame);
}
void IgnoreAudioFrame(scoped_ptr<PcmAudioFrame> audio_frame,
const base::TimeTicks& playout_time) {}
// Check the audio frame parameters but not the audio samples.
void CheckBasicAudioFrame(const scoped_ptr<PcmAudioFrame>& audio_frame,
const base::TimeTicks& playout_time) {
EXPECT_FALSE(expected_frame_.empty()); // Test for bug in test code.
ExpectedAudioFrame expected_audio_frame = expected_frame_.front();
EXPECT_EQ(audio_frame->channels, kAudioChannels);
EXPECT_EQ(audio_frame->frequency, expected_sampling_frequency_);
EXPECT_EQ(static_cast<int>(audio_frame->samples.size()),
expected_audio_frame.num_10ms_blocks * kAudioChannels *
expected_sampling_frequency_ / 100);
EXPECT_GE(expected_audio_frame.record_time +
base::TimeDelta::FromMilliseconds(kDefaultRtpMaxDelayMs +
kTimerErrorMs), playout_time);
EXPECT_LT(expected_audio_frame.record_time, playout_time);
EXPECT_EQ(audio_frame->samples.size(),
expected_audio_frame.audio_frame.samples.size());
}
size_t CalculateMaxResamplingDelay(size_t src_sample_rate_hz,
size_t dst_sample_rate_hz,
size_t number_of_channels) {
// The sinc resampler has a known delay, which we compute here. Multiplying
// by two gives us a crude maximum for any resampling, as the old resampler
// typically (but not always) has lower delay. Since we sample up and down
// we need to double our delay.
static const size_t kInputKernelDelaySamples = 16;
if (src_sample_rate_hz == dst_sample_rate_hz) return 0;
return (dst_sample_rate_hz * kInputKernelDelaySamples *
number_of_channels * 4) / src_sample_rate_hz;
}
// Computes the SNR based on the error between |reference_audio_frame| and
// |output_audio_frame| given a sample offset of |delay|.
double ComputeSNR(const PcmAudioFrame& reference_audio_frame,
const std::vector<int16>& output_audio_samples,
size_t delay) {
// Check all out allowed delays.
double square_error = 0;
double variance = 0;
for (size_t i = 0; i < reference_audio_frame.samples.size() - delay; ++i) {
size_t error = reference_audio_frame.samples[i] -
output_audio_samples[i + delay];
square_error += error * error;
variance += reference_audio_frame.samples[i] *
reference_audio_frame.samples[i];
}
// 16-bit audio has a dynamic range of 96 dB.
double snr = 96.0; // Assigning 96 dB to the zero-error case.
if (square_error > 0) {
snr = 10 * log10(variance / square_error);
}
return snr;
}
// Computes the best SNR based on the error between |ref_frame| and
// |test_frame|. It allows for up to a |max_delay| in samples between the
// signals to compensate for the re-sampling delay.
double ComputeBestSNR(const PcmAudioFrame& reference_audio_frame,
const std::vector<int16>& output_audio_samples,
size_t max_delay) {
double best_snr = 0;
// Check all out allowed delays.
for (size_t delay = 0; delay <= max_delay;
delay += reference_audio_frame.channels) {
double snr = ComputeSNR(reference_audio_frame, output_audio_samples,
delay);
if (snr > best_snr) {
best_snr = snr;
}
}
if (avg_snr_ == 0) {
avg_snr_ = best_snr;
} else {
avg_snr_ = (avg_snr_ * 7 + best_snr) / 8;
}
return best_snr;
}
void CheckPcmAudioFrame(scoped_ptr<PcmAudioFrame> audio_frame,
const base::TimeTicks& playout_time) {
++num_called_;
CheckBasicAudioFrame(audio_frame, playout_time);
ExpectedAudioFrame expected_audio_frame = expected_frame_.front();
expected_frame_.pop_front();
if (audio_frame->samples.size() == 0) return; // No more checks needed.
size_t max_delay = CalculateMaxResamplingDelay(48000, 32000,
expected_audio_frame.audio_frame.channels);
EXPECT_GE(ComputeBestSNR(expected_audio_frame.audio_frame,
audio_frame->samples, max_delay),
expected_min_snr_);
}
void CheckCodedPcmAudioFrame(scoped_ptr<EncodedAudioFrame> audio_frame,
const base::TimeTicks& playout_time) {
++num_called_;
EXPECT_FALSE(expected_frame_.empty()); // Test for bug in test code.
ExpectedAudioFrame expected_audio_frame = expected_frame_.front();
expected_frame_.pop_front();
EXPECT_EQ(static_cast<int>(audio_frame->data.size()),
2 * kAudioChannels * expected_sampling_frequency_ / 100);
base::TimeDelta time_since_recording =
playout_time - expected_audio_frame.record_time;
EXPECT_LE(time_since_recording, base::TimeDelta::FromMilliseconds(
kDefaultRtpMaxDelayMs + kTimerErrorMs));
EXPECT_LT(expected_audio_frame.record_time, playout_time);
if (audio_frame->data.size() == 0) return; // No more checks needed.
size_t max_delay = CalculateMaxResamplingDelay(48000, 32000,
expected_audio_frame.audio_frame.channels);
// We need to convert our "coded" audio frame to our raw format.
std::vector<int16> output_audio_samples;
size_t number_of_samples = audio_frame->data.size() / 2;
for (size_t i = 0; i < number_of_samples; ++i) {
uint16 sample = (audio_frame->data[1 + i * sizeof(uint16)]) +
(static_cast<uint16>(audio_frame->data[i * sizeof(uint16)]) << 8);
output_audio_samples.push_back(static_cast<int16>(sample));
}
EXPECT_GE(ComputeBestSNR(expected_audio_frame.audio_frame,
output_audio_samples, max_delay),
expected_min_snr_);
}
int number_times_called() {
EXPECT_GE(avg_snr_, expected_avg_snr_);
return num_called_;
}
protected:
virtual ~TestReceiverAudioCallback() {}
private:
friend class base::RefCountedThreadSafe<TestReceiverAudioCallback>;
int num_called_;
int expected_sampling_frequency_;
int expected_min_snr_;
int expected_avg_snr_;
double avg_snr_;
std::list<ExpectedAudioFrame> expected_frame_;
};
// Class that verifies the video frames coming out of the receiver.
class TestReceiverVideoCallback :
public base::RefCountedThreadSafe<TestReceiverVideoCallback> {
public:
struct ExpectedVideoFrame {
int start_value;
int width;
int height;
base::TimeTicks capture_time;
};
TestReceiverVideoCallback()
: num_called_(0) {}
void AddExpectedResult(int start_value,
int width,
int height,
const base::TimeTicks& capture_time) {
ExpectedVideoFrame expected_video_frame;
expected_video_frame.start_value = start_value;
expected_video_frame.capture_time = capture_time;
expected_video_frame.width = width;
expected_video_frame.height = height;
expected_frame_.push_back(expected_video_frame);
}
void CheckVideoFrame(scoped_ptr<I420VideoFrame> video_frame,
const base::TimeTicks& render_time) {
++num_called_;
EXPECT_FALSE(expected_frame_.empty()); // Test for bug in test code.
ExpectedVideoFrame expected_video_frame = expected_frame_.front();
expected_frame_.pop_front();
base::TimeDelta time_since_capture =
render_time - expected_video_frame.capture_time;
EXPECT_LE(time_since_capture, base::TimeDelta::FromMilliseconds(
kDefaultRtpMaxDelayMs + kTimerErrorMs));
EXPECT_LE(expected_video_frame.capture_time, render_time);
EXPECT_EQ(expected_video_frame.width, video_frame->width);
EXPECT_EQ(expected_video_frame.height, video_frame->height);
I420VideoFrame* expected_I420_frame = new I420VideoFrame();
expected_I420_frame->width = expected_video_frame.width;
expected_I420_frame->height = expected_video_frame.height;
PopulateVideoFrame(expected_I420_frame, expected_video_frame.start_value);
double psnr = I420PSNR(*expected_I420_frame, *(video_frame.get()));
EXPECT_GE(psnr, kVideoAcceptedPSNR);
FrameInput::DeleteVideoFrame(expected_I420_frame);
}
int number_times_called() { return num_called_;}
protected:
virtual ~TestReceiverVideoCallback() {}
private:
friend class base::RefCountedThreadSafe<TestReceiverVideoCallback>;
int num_called_;
std::list<ExpectedVideoFrame> expected_frame_;
};
// The actual test class, generate synthetic data for both audio and video and
// send those through the sender and receiver and analyzes the result.
class End2EndTest : public ::testing::Test {
protected:
End2EndTest()
: task_runner_(new test::FakeTaskRunner(&testing_clock_)),
cast_environment_(new CastEnvironment(&testing_clock_, task_runner_,
task_runner_, task_runner_, task_runner_, task_runner_)),
sender_to_receiver_(cast_environment_),
receiver_to_sender_(cast_environment_),
test_receiver_audio_callback_(new TestReceiverAudioCallback()),
test_receiver_video_callback_(new TestReceiverVideoCallback()),
audio_angle_(0) {
testing_clock_.Advance(
base::TimeDelta::FromMilliseconds(kStartMillisecond));
}
void SetupConfig(AudioCodec audio_codec,
int audio_sampling_frequency,
bool external_audio_decoder,
int max_number_of_video_buffers_used) {
audio_sender_config_.sender_ssrc = 1;
audio_sender_config_.incoming_feedback_ssrc = 2;
audio_sender_config_.rtp_payload_type = 96;
audio_sender_config_.use_external_encoder = false;
audio_sender_config_.frequency = audio_sampling_frequency;
audio_sender_config_.channels = kAudioChannels;
audio_sender_config_.bitrate = 64000;
audio_sender_config_.codec = audio_codec;
audio_receiver_config_.feedback_ssrc =
audio_sender_config_.incoming_feedback_ssrc;
audio_receiver_config_.incoming_ssrc =
audio_sender_config_.sender_ssrc;
audio_receiver_config_.rtp_payload_type =
audio_sender_config_.rtp_payload_type;
audio_receiver_config_.use_external_decoder = external_audio_decoder;
audio_receiver_config_.frequency = audio_sender_config_.frequency;
audio_receiver_config_.channels = kAudioChannels;
audio_receiver_config_.codec = audio_sender_config_.codec;
video_sender_config_.sender_ssrc = 3;
video_sender_config_.incoming_feedback_ssrc = 4;
video_sender_config_.rtp_payload_type = 97;
video_sender_config_.use_external_encoder = false;
video_sender_config_.width = kVideoWidth;
video_sender_config_.height = kVideoHeight;
video_sender_config_.max_bitrate = 5000000;
video_sender_config_.min_bitrate = 1000000;
video_sender_config_.start_bitrate = 5000000;
video_sender_config_.max_qp = 30;
video_sender_config_.min_qp = 4;
video_sender_config_.max_frame_rate = 30;
video_sender_config_.max_number_of_video_buffers_used =
max_number_of_video_buffers_used;
video_sender_config_.codec = kVp8;
video_sender_config_.number_of_cores = 1;
video_receiver_config_.feedback_ssrc =
video_sender_config_.incoming_feedback_ssrc;
video_receiver_config_.incoming_ssrc =
video_sender_config_.sender_ssrc;
video_receiver_config_.rtp_payload_type =
video_sender_config_.rtp_payload_type;
video_receiver_config_.use_external_decoder = false;
video_receiver_config_.codec = video_sender_config_.codec;
}
void Create() {
cast_receiver_.reset(CastReceiver::CreateCastReceiver(cast_environment_,
audio_receiver_config_, video_receiver_config_, &receiver_to_sender_));
cast_sender_.reset(CastSender::CreateCastSender(cast_environment_,
audio_sender_config_,
video_sender_config_,
NULL,
&sender_to_receiver_));
receiver_to_sender_.RegisterPacketReceiver(cast_sender_->packet_receiver());
sender_to_receiver_.RegisterPacketReceiver(
cast_receiver_->packet_receiver());
frame_input_ = cast_sender_->frame_input();
frame_receiver_ = cast_receiver_->frame_receiver();
}
virtual ~End2EndTest() {}
void SendVideoFrame(int start_value, const base::TimeTicks& capture_time) {
I420VideoFrame* video_frame = new I420VideoFrame();
video_frame->width = video_sender_config_.width;
video_frame->height = video_sender_config_.height;
PopulateVideoFrame(video_frame, start_value);
frame_input_->InsertRawVideoFrame(video_frame, capture_time,
base::Bind(FrameInput::DeleteVideoFrame, video_frame));
}
PcmAudioFrame* CreateAudioFrame(int num_10ms_blocks, int sound_frequency,
int sampling_frequency) {
int number_of_samples = kAudioChannels * num_10ms_blocks *
sampling_frequency / 100;
int amplitude = 1000;
PcmAudioFrame* audio_frame = new PcmAudioFrame();
audio_frame->channels = kAudioChannels;
audio_frame->frequency = sampling_frequency;
audio_frame->samples.reserve(number_of_samples);
// Create the sinusoid.
double increment = (2 * 3.1415926535897932384626433) /
(static_cast<double>(sampling_frequency) / sound_frequency);
int sample = 0;
while (sample < number_of_samples) {
int16 value = static_cast<int16>(amplitude * sin(audio_angle_));
for (int i = 0; i < kAudioChannels; ++i) {
audio_frame->samples.insert(audio_frame->samples.end(), value);
++sample;
}
audio_angle_ += increment;
}
return audio_frame;
}
void RunTasks(int during_ms) {
for (int i = 0; i < during_ms; ++i) {
// Call process the timers every 1 ms.
testing_clock_.Advance(base::TimeDelta::FromMilliseconds(1));
task_runner_->RunTasks();
}
}
AudioReceiverConfig audio_receiver_config_;
VideoReceiverConfig video_receiver_config_;
AudioSenderConfig audio_sender_config_;
VideoSenderConfig video_sender_config_;
base::SimpleTestTickClock testing_clock_;
scoped_refptr<test::FakeTaskRunner> task_runner_;
scoped_refptr<CastEnvironment> cast_environment_;
LoopBackTransport sender_to_receiver_;
LoopBackTransport receiver_to_sender_;
scoped_ptr<CastReceiver> cast_receiver_;
scoped_ptr<CastSender> cast_sender_;
scoped_refptr<FrameInput> frame_input_;
scoped_refptr<FrameReceiver> frame_receiver_;
scoped_refptr<TestReceiverAudioCallback> test_receiver_audio_callback_;
scoped_refptr<TestReceiverVideoCallback> test_receiver_video_callback_;
double audio_angle_;
};
// Audio and video test without packet loss using raw PCM 16 audio "codec";
// note: even though the audio is not coded it is still re-sampled between
// 48 and 32 KHz.
TEST_F(End2EndTest, LoopNoLossPcm16) {
// Note running codec in different sampling frequency.
SetupConfig(kPcm16, 32000, false, 1);
Create();
test_receiver_audio_callback_->SetExpectedResult(kAudioSamplingFrequency, 20,
25);
int video_start = 1;
int audio_diff = kFrameTimerMs;
int i = 0;
std::cout << "Progress ";
for (; i < 100; ++i) {
int num_10ms_blocks = audio_diff / 10;
audio_diff -= num_10ms_blocks * 10;
base::TimeTicks send_time = testing_clock_.NowTicks();
test_receiver_video_callback_->AddExpectedResult(video_start,
video_sender_config_.width, video_sender_config_.height, send_time);
PcmAudioFrame* audio_frame = CreateAudioFrame(num_10ms_blocks,
kSoundFrequency, kAudioSamplingFrequency);
if (i != 0) {
// Due to the re-sampler and NetEq in the webrtc AudioCodingModule the
// first samples will be 0 and then slowly ramp up to its real amplitude;
// ignore the first frame.
test_receiver_audio_callback_->AddExpectedResult(audio_frame,
num_10ms_blocks, send_time);
}
frame_input_->InsertRawAudioFrame(audio_frame, send_time,
base::Bind(FrameInput::DeleteAudioFrame, audio_frame));
SendVideoFrame(video_start, send_time);
RunTasks(kFrameTimerMs);
audio_diff += kFrameTimerMs;
if (i == 0) {
frame_receiver_->GetRawAudioFrame(num_10ms_blocks,
kAudioSamplingFrequency,
base::Bind(&TestReceiverAudioCallback::IgnoreAudioFrame,
test_receiver_audio_callback_));
} else {
frame_receiver_->GetRawAudioFrame(num_10ms_blocks,
kAudioSamplingFrequency,
base::Bind(&TestReceiverAudioCallback::CheckPcmAudioFrame,
test_receiver_audio_callback_));
}
frame_receiver_->GetRawVideoFrame(
base::Bind(&TestReceiverVideoCallback::CheckVideoFrame,
test_receiver_video_callback_));
std::cout << " " << i << std::flush;
video_start++;
}
std::cout << std::endl;
RunTasks(2 * kFrameTimerMs + 1); // Empty the receiver pipeline.
EXPECT_EQ(i - 1, test_receiver_audio_callback_->number_times_called());
EXPECT_EQ(i, test_receiver_video_callback_->number_times_called());
}
// This tests our external decoder interface for Audio.
// Audio test without packet loss using raw PCM 16 audio "codec";
TEST_F(End2EndTest, LoopNoLossPcm16ExternalDecoder) {
// Note: Create an input in the same sampling frequency as the codec to avoid
// re-sampling.
const int audio_sampling_frequency = 32000;
SetupConfig(kPcm16, audio_sampling_frequency, true, 1);
Create();
test_receiver_audio_callback_->SetExpectedResult(audio_sampling_frequency, 96,
96);
int i = 0;
for (; i < 100; ++i) {
base::TimeTicks send_time = testing_clock_.NowTicks();
PcmAudioFrame* audio_frame = CreateAudioFrame(1, kSoundFrequency,
audio_sampling_frequency);
test_receiver_audio_callback_->AddExpectedResult(audio_frame, 1,
send_time);
frame_input_->InsertRawAudioFrame(audio_frame, send_time,
base::Bind(FrameInput::DeleteAudioFrame, audio_frame));
RunTasks(10);
frame_receiver_->GetCodedAudioFrame(
base::Bind(&TestReceiverAudioCallback::CheckCodedPcmAudioFrame,
test_receiver_audio_callback_));
}
RunTasks(2 * kFrameTimerMs + 1); // Empty the receiver pipeline.
EXPECT_EQ(100, test_receiver_audio_callback_->number_times_called());
}
// This tests our Opus audio codec without video.
TEST_F(End2EndTest, LoopNoLossOpus) {
SetupConfig(kOpus, kAudioSamplingFrequency, false, 1);
Create();
test_receiver_audio_callback_->SetExpectedResult(
kAudioSamplingFrequency, 18, 20);
int i = 0;
for (; i < 100; ++i) {
int num_10ms_blocks = 3;
base::TimeTicks send_time = testing_clock_.NowTicks();
PcmAudioFrame* audio_frame = CreateAudioFrame(num_10ms_blocks,
kSoundFrequency, kAudioSamplingFrequency);
if (i != 0) {
test_receiver_audio_callback_->AddExpectedResult(audio_frame,
num_10ms_blocks, send_time);
}
frame_input_->InsertRawAudioFrame(audio_frame, send_time,
base::Bind(FrameInput::DeleteAudioFrame, audio_frame));
RunTasks(30);
if (i == 0) {
frame_receiver_->GetRawAudioFrame(num_10ms_blocks,
kAudioSamplingFrequency,
base::Bind(&TestReceiverAudioCallback::IgnoreAudioFrame,
test_receiver_audio_callback_));
} else {
frame_receiver_->GetRawAudioFrame(num_10ms_blocks,
kAudioSamplingFrequency,
base::Bind(&TestReceiverAudioCallback::CheckPcmAudioFrame,
test_receiver_audio_callback_));
}
}
RunTasks(2 * kFrameTimerMs + 1); // Empty the receiver pipeline.
EXPECT_EQ(i - 1, test_receiver_audio_callback_->number_times_called());
}
// This tests start sending audio and video before the receiver is ready.
TEST_F(End2EndTest, StartSenderBeforeReceiver) {
SetupConfig(kOpus, kAudioSamplingFrequency, false, 1);
Create();
test_receiver_audio_callback_->SetExpectedResult(
kAudioSamplingFrequency, 18, 20);
int video_start = 1;
int audio_diff = kFrameTimerMs;
sender_to_receiver_.SetSendPackets(false);
for (int i = 0; i < 3; ++i) {
int num_10ms_blocks = audio_diff / 10;
audio_diff -= num_10ms_blocks * 10;
base::TimeTicks send_time = testing_clock_.NowTicks();
PcmAudioFrame* audio_frame = CreateAudioFrame(num_10ms_blocks,
kSoundFrequency, kAudioSamplingFrequency);
frame_input_->InsertRawAudioFrame(audio_frame, send_time,
base::Bind(FrameInput::DeleteAudioFrame, audio_frame));
SendVideoFrame(video_start, send_time);
RunTasks(kFrameTimerMs);
audio_diff += kFrameTimerMs;
video_start++;
}
RunTasks(100);
sender_to_receiver_.SetSendPackets(true);
int j = 0;
const int number_of_audio_frames_to_ignore = 3;
for (; j < 10; ++j) {
int num_10ms_blocks = audio_diff / 10;
audio_diff -= num_10ms_blocks * 10;
base::TimeTicks send_time = testing_clock_.NowTicks();
PcmAudioFrame* audio_frame = CreateAudioFrame(num_10ms_blocks,
kSoundFrequency, kAudioSamplingFrequency);
frame_input_->InsertRawAudioFrame(audio_frame, send_time,
base::Bind(FrameInput::DeleteAudioFrame, audio_frame));
if (j >= number_of_audio_frames_to_ignore) {
test_receiver_audio_callback_->AddExpectedResult(audio_frame,
num_10ms_blocks, send_time);
}
test_receiver_video_callback_->AddExpectedResult(video_start,
video_sender_config_.width, video_sender_config_.height, send_time);
SendVideoFrame(video_start, send_time);
RunTasks(kFrameTimerMs);
audio_diff += kFrameTimerMs;
if (j < number_of_audio_frames_to_ignore) {
frame_receiver_->GetRawAudioFrame(num_10ms_blocks,
kAudioSamplingFrequency,
base::Bind(&TestReceiverAudioCallback::IgnoreAudioFrame,
test_receiver_audio_callback_));
} else {
frame_receiver_->GetRawAudioFrame(num_10ms_blocks,
kAudioSamplingFrequency,
base::Bind(&TestReceiverAudioCallback::CheckPcmAudioFrame,
test_receiver_audio_callback_));
}
frame_receiver_->GetRawVideoFrame(
base::Bind(&TestReceiverVideoCallback::CheckVideoFrame,
test_receiver_video_callback_));
video_start++;
}
RunTasks(2 * kFrameTimerMs + 1); // Empty the receiver pipeline.
EXPECT_EQ(j - number_of_audio_frames_to_ignore,
test_receiver_audio_callback_->number_times_called());
EXPECT_EQ(j, test_receiver_video_callback_->number_times_called());
}
// This tests a network glitch lasting for 10 video frames.
TEST_F(End2EndTest, GlitchWith3Buffers) {
SetupConfig(kOpus, kAudioSamplingFrequency, false, 3);
video_sender_config_.rtp_max_delay_ms = 67;
video_receiver_config_.rtp_max_delay_ms = 67;
Create();
int video_start = 50;
base::TimeTicks send_time = testing_clock_.NowTicks();
SendVideoFrame(video_start, send_time);
RunTasks(kFrameTimerMs);
test_receiver_video_callback_->AddExpectedResult(video_start,
video_sender_config_.width, video_sender_config_.height, send_time);
frame_receiver_->GetRawVideoFrame(
base::Bind(&TestReceiverVideoCallback::CheckVideoFrame,
test_receiver_video_callback_));
RunTasks(750); // Make sure that we send a RTCP packet.
video_start++;
// Introduce a glitch lasting for 10 frames.
sender_to_receiver_.SetSendPackets(false);
for (int i = 0; i < 10; ++i) {
send_time = testing_clock_.NowTicks();
// First 3 will be sent and lost.
SendVideoFrame(video_start, send_time);
RunTasks(kFrameTimerMs);
video_start++;
}
sender_to_receiver_.SetSendPackets(true);
RunTasks(100);
send_time = testing_clock_.NowTicks();
// Frame 1 should be acked by now and we should have an opening to send 4.
SendVideoFrame(video_start, send_time);
RunTasks(kFrameTimerMs);
test_receiver_video_callback_->AddExpectedResult(video_start,
video_sender_config_.width, video_sender_config_.height, send_time);
frame_receiver_->GetRawVideoFrame(
base::Bind(&TestReceiverVideoCallback::CheckVideoFrame,
test_receiver_video_callback_));
RunTasks(2 * kFrameTimerMs + 1); // Empty the receiver pipeline.
EXPECT_EQ(2, test_receiver_video_callback_->number_times_called());
}
TEST_F(End2EndTest, DropEveryOtherFrame3Buffers) {
SetupConfig(kOpus, kAudioSamplingFrequency, false, 3);
video_sender_config_.rtp_max_delay_ms = 67;
video_receiver_config_.rtp_max_delay_ms = 67;
Create();
sender_to_receiver_.DropAllPacketsBelongingToOddFrames();
int video_start = 50;
base::TimeTicks send_time;
std::cout << "Progress ";
int i = 0;
for (; i < 20; ++i) {
send_time = testing_clock_.NowTicks();
SendVideoFrame(video_start, send_time);
if (i % 2 == 0) {
test_receiver_video_callback_->AddExpectedResult(video_start,
video_sender_config_.width, video_sender_config_.height, send_time);
// GetRawVideoFrame will not return the frame until we are close in
// time before we should render the frame.
frame_receiver_->GetRawVideoFrame(
base::Bind(&TestReceiverVideoCallback::CheckVideoFrame,
test_receiver_video_callback_));
}
RunTasks(kFrameTimerMs);
std::cout << " " << i << std::flush;
video_start++;
}
std::cout << std::endl;
RunTasks(2 * kFrameTimerMs + 1); // Empty the pipeline.
EXPECT_EQ(i / 2, test_receiver_video_callback_->number_times_called());
}
TEST_F(End2EndTest, ResetReferenceFrameId) {
SetupConfig(kOpus, kAudioSamplingFrequency, false, 3);
video_sender_config_.rtp_max_delay_ms = 67;
video_receiver_config_.rtp_max_delay_ms = 67;
Create();
sender_to_receiver_.AlwaysResetReferenceFrameId();
int frames_counter = 0;
for (; frames_counter < 20; ++frames_counter) {
const base::TimeTicks send_time = testing_clock_.NowTicks();
SendVideoFrame(frames_counter, send_time);
test_receiver_video_callback_->AddExpectedResult(frames_counter,
video_sender_config_.width, video_sender_config_.height, send_time);
// GetRawVideoFrame will not return the frame until we are close to the
// time in which we should render the frame.
frame_receiver_->GetRawVideoFrame(
base::Bind(&TestReceiverVideoCallback::CheckVideoFrame,
test_receiver_video_callback_));
RunTasks(kFrameTimerMs);
}
RunTasks(2 * kFrameTimerMs + 1); // Empty the pipeline.
EXPECT_EQ(frames_counter,
test_receiver_video_callback_->number_times_called());
}
// TODO(pwestin): Add repeatable packet loss test.
// TODO(pwestin): Add test for misaligned send get calls.
// TODO(pwestin): Add more tests that does not resample.
// TODO(pwestin): Add test when we have starvation for our RunTask.
} // namespace cast
} // namespace media
|