1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/webm/cluster_builder.h"
#include "base/logging.h"
#include "media/base/data_buffer.h"
namespace media {
static const uint8 kClusterHeader[] = {
0x1F, 0x43, 0xB6, 0x75, // CLUSTER ID
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // cluster(size = 0)
0xE7, // Timecode ID
0x88, // timecode(size=8)
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // timecode value
};
static const uint8 kSimpleBlockHeader[] = {
0xA3, // SimpleBlock ID
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // SimpleBlock(size = 0)
};
static const uint8 kBlockGroupHeader[] = {
0xA0, // BlockGroup ID
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // BlockGroup(size = 0)
0x9B, // BlockDuration ID
0x88, // BlockDuration(size = 8)
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // duration
0xA1, // Block ID
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // Block(size = 0)
};
enum {
kClusterSizeOffset = 4,
kClusterTimecodeOffset = 14,
kSimpleBlockSizeOffset = 1,
kBlockGroupSizeOffset = 1,
kBlockGroupDurationOffset = 11,
kBlockGroupBlockSizeOffset = 20,
kInitialBufferSize = 32768,
};
Cluster::Cluster(scoped_ptr<uint8[]> data, int size)
: data_(data.Pass()), size_(size) {}
Cluster::~Cluster() {}
ClusterBuilder::ClusterBuilder() { Reset(); }
ClusterBuilder::~ClusterBuilder() {}
void ClusterBuilder::SetClusterTimecode(int64 cluster_timecode) {
DCHECK_EQ(cluster_timecode_, -1);
cluster_timecode_ = cluster_timecode;
// Write the timecode into the header.
uint8* buf = buffer_.get() + kClusterTimecodeOffset;
for (int i = 7; i >= 0; --i) {
buf[i] = cluster_timecode & 0xff;
cluster_timecode >>= 8;
}
}
void ClusterBuilder::AddSimpleBlock(int track_num, int64 timecode, int flags,
const uint8* data, int size) {
int block_size = size + 4;
int bytes_needed = sizeof(kSimpleBlockHeader) + block_size;
if (bytes_needed > (buffer_size_ - bytes_used_))
ExtendBuffer(bytes_needed);
uint8* buf = buffer_.get() + bytes_used_;
int block_offset = bytes_used_;
memcpy(buf, kSimpleBlockHeader, sizeof(kSimpleBlockHeader));
UpdateUInt64(block_offset + kSimpleBlockSizeOffset, block_size);
buf += sizeof(kSimpleBlockHeader);
WriteBlock(buf, track_num, timecode, flags, data, size);
bytes_used_ += bytes_needed;
}
void ClusterBuilder::AddBlockGroup(int track_num, int64 timecode, int duration,
int flags, const uint8* data, int size) {
int block_size = size + 4;
int bytes_needed = sizeof(kBlockGroupHeader) + block_size;
int block_group_size = bytes_needed - 9;
if (bytes_needed > (buffer_size_ - bytes_used_))
ExtendBuffer(bytes_needed);
uint8* buf = buffer_.get() + bytes_used_;
int block_group_offset = bytes_used_;
memcpy(buf, kBlockGroupHeader, sizeof(kBlockGroupHeader));
UpdateUInt64(block_group_offset + kBlockGroupSizeOffset, block_group_size);
UpdateUInt64(block_group_offset + kBlockGroupDurationOffset, duration);
UpdateUInt64(block_group_offset + kBlockGroupBlockSizeOffset, block_size);
buf += sizeof(kBlockGroupHeader);
// Make sure the 4 most-significant bits are 0.
// http://www.matroska.org/technical/specs/index.html#block_structure
flags &= 0x0f;
WriteBlock(buf, track_num, timecode, flags, data, size);
bytes_used_ += bytes_needed;
}
void ClusterBuilder::WriteBlock(uint8* buf, int track_num, int64 timecode,
int flags, const uint8* data, int size) {
DCHECK_GE(track_num, 0);
DCHECK_LE(track_num, 126);
DCHECK_GE(flags, 0);
DCHECK_LE(flags, 0xff);
DCHECK(data);
DCHECK_GT(size, 0);
DCHECK_NE(cluster_timecode_, -1);
int64 timecode_delta = timecode - cluster_timecode_;
DCHECK_GE(timecode_delta, -32768);
DCHECK_LE(timecode_delta, 32767);
buf[0] = 0x80 | (track_num & 0x7F);
buf[1] = (timecode_delta >> 8) & 0xff;
buf[2] = timecode_delta & 0xff;
buf[3] = flags & 0xff;
memcpy(buf + 4, data, size);
}
scoped_ptr<Cluster> ClusterBuilder::Finish() {
DCHECK_NE(cluster_timecode_, -1);
UpdateUInt64(kClusterSizeOffset, bytes_used_ - (kClusterSizeOffset + 8));
scoped_ptr<Cluster> ret(new Cluster(buffer_.Pass(), bytes_used_));
Reset();
return ret.Pass();
}
void ClusterBuilder::Reset() {
buffer_size_ = kInitialBufferSize;
buffer_.reset(new uint8[buffer_size_]);
memcpy(buffer_.get(), kClusterHeader, sizeof(kClusterHeader));
bytes_used_ = sizeof(kClusterHeader);
cluster_timecode_ = -1;
}
void ClusterBuilder::ExtendBuffer(int bytes_needed) {
int new_buffer_size = 2 * buffer_size_;
while ((new_buffer_size - bytes_used_) < bytes_needed)
new_buffer_size *= 2;
scoped_ptr<uint8[]> new_buffer(new uint8[new_buffer_size]);
memcpy(new_buffer.get(), buffer_.get(), bytes_used_);
buffer_.reset(new_buffer.release());
buffer_size_ = new_buffer_size;
}
void ClusterBuilder::UpdateUInt64(int offset, int64 value) {
DCHECK_LE(offset + 7, buffer_size_);
uint8* buf = buffer_.get() + offset;
// Fill the last 7 bytes of size field in big-endian order.
for (int i = 7; i > 0; i--) {
buf[i] = value & 0xff;
value >>= 8;
}
}
} // namespace media
|