summaryrefslogtreecommitdiffstats
path: root/mojo/system/message_in_transit.cc
blob: 3a0abe2a715b81edad05f65ab8e8d40752a30868 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "mojo/system/message_in_transit.h"

#include <string.h>

#include <new>

#include "base/compiler_specific.h"
#include "base/logging.h"
#include "base/memory/aligned_memory.h"
#include "mojo/system/constants.h"

namespace mojo {
namespace system {

struct MessageInTransit::PrivateStructForCompileAsserts {
  // The size of |Header| must be appropriate to maintain alignment of the
  // following data.
  COMPILE_ASSERT(sizeof(Header) % kMessageAlignment == 0,
                 sizeof_MessageInTransit_Header_not_a_multiple_of_alignment);
  // Avoid dangerous situations, but making sure that the size of the "header" +
  // the size of the data fits into a 31-bit number.
  COMPILE_ASSERT(static_cast<uint64_t>(sizeof(Header)) + kMaxMessageNumBytes <=
                     0x7fffffffULL,
                 kMaxMessageNumBytes_too_big);
};

STATIC_CONST_MEMBER_DEFINITION const MessageInTransit::Type
    MessageInTransit::kTypeMessagePipeEndpoint;
STATIC_CONST_MEMBER_DEFINITION const MessageInTransit::Type
    MessageInTransit::kTypeMessagePipe;
STATIC_CONST_MEMBER_DEFINITION const MessageInTransit::Type
    MessageInTransit::kTypeChannel;
STATIC_CONST_MEMBER_DEFINITION const MessageInTransit::Subtype
    MessageInTransit::kSubtypeMessagePipeEndpointData;
STATIC_CONST_MEMBER_DEFINITION const MessageInTransit::Subtype
    MessageInTransit::kSubtypeMessagePipePeerClosed;
STATIC_CONST_MEMBER_DEFINITION const MessageInTransit::EndpointId
    MessageInTransit::kInvalidEndpointId;
STATIC_CONST_MEMBER_DEFINITION const size_t MessageInTransit::kMessageAlignment;

MessageInTransit::MessageInTransit(OwnedBuffer,
                                   Type type,
                                   Subtype subtype,
                                   uint32_t num_bytes,
                                   uint32_t num_handles,
                                   const void* bytes)
    : owns_buffers_(true),
      main_buffer_size_(RoundUpMessageAlignment(sizeof(Header) + num_bytes)),
      main_buffer_(base::AlignedAlloc(main_buffer_size_, kMessageAlignment)),
      secondary_buffer_size_(0),
      secondary_buffer_(NULL) {
  DCHECK_LE(num_bytes, kMaxMessageNumBytes);
  DCHECK_LE(num_handles, kMaxMessageNumHandles);

  // |total_size| is updated below, from the other values.
  header()->type = type;
  header()->subtype = subtype;
  header()->source_id = kInvalidEndpointId;
  header()->destination_id = kInvalidEndpointId;
  header()->num_bytes = num_bytes;
  header()->num_handles = num_handles;
  header()->reserved0 = 0;
  header()->reserved1 = 0;
  // Note: If dispatchers are subsequently attached (in particular, if
  // |num_handles| is nonzero), then |total_size| will have to be adjusted.
  UpdateTotalSize();

  if (bytes) {
    memcpy(MessageInTransit::bytes(), bytes, num_bytes);
    memset(static_cast<char*>(MessageInTransit::bytes()) + num_bytes, 0,
           main_buffer_size_ - sizeof(Header) - num_bytes);
  } else {
    memset(MessageInTransit::bytes(), 0, main_buffer_size_ - sizeof(Header));
  }
}

MessageInTransit::MessageInTransit(OwnedBuffer,
                                   const MessageInTransit& other)
    : owns_buffers_(true),
      main_buffer_size_(other.main_buffer_size()),
      main_buffer_(base::AlignedAlloc(main_buffer_size_, kMessageAlignment)),
      secondary_buffer_size_(other.secondary_buffer_size()),
      secondary_buffer_(secondary_buffer_size_ ?
                            base::AlignedAlloc(secondary_buffer_size_,
                                               kMessageAlignment) : NULL) {
  DCHECK(!other.dispatchers_.get());
  DCHECK_GE(main_buffer_size_, sizeof(Header));
  DCHECK_EQ(main_buffer_size_ % kMessageAlignment, 0u);

  memcpy(main_buffer_, other.main_buffer(), main_buffer_size_);
  memcpy(secondary_buffer_, other.secondary_buffer(), secondary_buffer_size_);

  DCHECK_EQ(main_buffer_size_,
            RoundUpMessageAlignment(sizeof(Header) + num_bytes()));
}

MessageInTransit::MessageInTransit(UnownedBuffer,
                                   size_t message_size,
                                   void* buffer)
    : owns_buffers_(false),
      main_buffer_size_(0),
      main_buffer_(NULL),
      secondary_buffer_size_(0),
      secondary_buffer_(NULL) {
  DCHECK_GE(message_size, sizeof(Header));
  DCHECK_EQ(message_size % kMessageAlignment, 0u);
  DCHECK(buffer);

  Header* header = static_cast<Header*>(buffer);
  DCHECK_EQ(header->total_size, message_size);

  main_buffer_size_ =
      RoundUpMessageAlignment(sizeof(Header) + header->num_bytes);
  DCHECK_LE(main_buffer_size_, message_size);
  main_buffer_ = buffer;
  DCHECK_EQ(reinterpret_cast<uintptr_t>(main_buffer_) % kMessageAlignment, 0u);

  if (message_size > main_buffer_size_) {
    secondary_buffer_size_ = message_size - main_buffer_size_;
    secondary_buffer_ = static_cast<char*>(buffer) + main_buffer_size_;
    DCHECK_EQ(reinterpret_cast<uintptr_t>(secondary_buffer_) %
                  kMessageAlignment, 0u);
  }
}

MessageInTransit::~MessageInTransit() {
  if (owns_buffers_) {
    base::AlignedFree(main_buffer_);
    base::AlignedFree(secondary_buffer_);  // Okay if null.
#ifndef NDEBUG
    main_buffer_size_ = 0;
    main_buffer_ = NULL;
    secondary_buffer_size_ = 0;
    secondary_buffer_ = NULL;
#endif
  }

  if (dispatchers_.get()) {
    for (size_t i = 0; i < dispatchers_->size(); i++) {
      if (!(*dispatchers_)[i])
        continue;

      DCHECK((*dispatchers_)[i]->HasOneRef());
      (*dispatchers_)[i]->Close();
    }
    dispatchers_.reset();
  }
}

// static
bool MessageInTransit::GetNextMessageSize(const void* buffer,
                                          size_t buffer_size,
                                          size_t* next_message_size) {
  DCHECK(buffer);
  DCHECK_EQ(reinterpret_cast<uintptr_t>(buffer) %
                MessageInTransit::kMessageAlignment, 0u);
  DCHECK(next_message_size);

  if (buffer_size < sizeof(Header))
    return false;

  const Header* header = static_cast<const Header*>(buffer);
  *next_message_size = header->total_size;
  DCHECK_EQ(*next_message_size % kMessageAlignment, 0u);
  return true;
}

void MessageInTransit::SetDispatchers(
    scoped_ptr<std::vector<scoped_refptr<Dispatcher> > > dispatchers) {
  DCHECK(dispatchers.get());
  DCHECK(owns_buffers_);
  DCHECK(!dispatchers_.get());

  dispatchers_ = dispatchers.Pass();
#ifndef NDEBUG
  for (size_t i = 0; i < dispatchers_->size(); i++)
    DCHECK(!(*dispatchers_)[i] || (*dispatchers_)[i]->HasOneRef());
#endif
}

void MessageInTransit::SerializeAndCloseDispatchers(Channel* channel) {
  DCHECK(channel);
  DCHECK(owns_buffers_);
  DCHECK(!secondary_buffer_);
  CHECK_EQ(num_handles(),
           dispatchers_.get() ? dispatchers_->size() : static_cast<size_t>(0));

  if (!num_handles())
    return;

  // The size of the secondary buffer. We'll start with the size of the entry
  // size table (which will contain the size of the data for each handle), and
  // add to it as we go along.
  size_t size = RoundUpMessageAlignment(num_handles() * sizeof(uint32_t));
  // The maximum size that we'll need for the secondary buffer. We'll allocate
  // this much.
  size_t max_size = size;
  // TODO(vtl): Iterate through dispatchers and query their maximum size (and
  // add each, rounded up, to |max_size|).

  secondary_buffer_ = base::AlignedAlloc(max_size, kMessageAlignment);
  // TODO(vtl): I wonder if it's faster to clear everything once, or to only
  // clear padding as needed.
  memset(secondary_buffer_, 0, max_size);

  uint32_t* entry_size_table = static_cast<uint32_t*>(secondary_buffer_);
  for (size_t i = 0; i < dispatchers_->size(); i++) {
    // The entry size table entry is already zero by default.
    if (!(*dispatchers_)[i])
      continue;

    // TODO(vtl): Serialize this dispatcher (getting its actual size, and adding
    // that (rounded up) to |size|.
    entry_size_table[i] = 0;

    DCHECK((*dispatchers_)[i]->HasOneRef());
    (*dispatchers_)[i]->Close();
  }

  secondary_buffer_size_ = static_cast<uint32_t>(size);
  UpdateTotalSize();
}

void MessageInTransit::UpdateTotalSize() {
  DCHECK_EQ(main_buffer_size_ % kMessageAlignment, 0u);
  DCHECK_EQ(secondary_buffer_size_ % kMessageAlignment, 0u);
  header()->total_size =
      static_cast<uint32_t>(main_buffer_size_ + secondary_buffer_size_);
}

}  // namespace system
}  // namespace mojo