1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
|
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "mojo/system/raw_channel.h"
#include <string.h>
#include <algorithm>
#include "base/bind.h"
#include "base/location.h"
#include "base/logging.h"
#include "base/message_loop/message_loop.h"
#include "base/stl_util.h"
#include "mojo/system/message_in_transit.h"
namespace mojo {
namespace system {
const size_t kReadSize = 4096;
RawChannel::ReadBuffer::ReadBuffer() : buffer_(kReadSize), num_valid_bytes_(0) {
}
RawChannel::ReadBuffer::~ReadBuffer() {}
void RawChannel::ReadBuffer::GetBuffer(char** addr, size_t* size) {
DCHECK_GE(buffer_.size(), num_valid_bytes_ + kReadSize);
*addr = &buffer_[0] + num_valid_bytes_;
*size = kReadSize;
}
RawChannel::WriteBuffer::WriteBuffer() : offset_(0) {}
RawChannel::WriteBuffer::~WriteBuffer() {
STLDeleteElements(&message_queue_);
}
void RawChannel::WriteBuffer::GetBuffers(std::vector<Buffer>* buffers) const {
buffers->clear();
size_t bytes_to_write = GetTotalBytesToWrite();
if (bytes_to_write == 0)
return;
MessageInTransit* message = message_queue_.front();
if (!message->secondary_buffer_size()) {
// Only write from the main buffer.
DCHECK_LT(offset_, message->main_buffer_size());
DCHECK_LE(bytes_to_write, message->main_buffer_size());
Buffer buffer = {
static_cast<const char*>(message->main_buffer()) + offset_,
bytes_to_write};
buffers->push_back(buffer);
return;
}
if (offset_ >= message->main_buffer_size()) {
// Only write from the secondary buffer.
DCHECK_LT(offset_ - message->main_buffer_size(),
message->secondary_buffer_size());
DCHECK_LE(bytes_to_write, message->secondary_buffer_size());
Buffer buffer = {
static_cast<const char*>(message->secondary_buffer()) +
(offset_ - message->main_buffer_size()),
bytes_to_write};
buffers->push_back(buffer);
return;
}
// Write from both buffers.
DCHECK_EQ(bytes_to_write, message->main_buffer_size() - offset_ +
message->secondary_buffer_size());
Buffer buffer1 = {
static_cast<const char*>(message->main_buffer()) + offset_,
message->main_buffer_size() - offset_};
buffers->push_back(buffer1);
Buffer buffer2 = {
static_cast<const char*>(message->secondary_buffer()),
message->secondary_buffer_size()};
buffers->push_back(buffer2);
}
size_t RawChannel::WriteBuffer::GetTotalBytesToWrite() const {
if (message_queue_.empty())
return 0;
MessageInTransit* message = message_queue_.front();
DCHECK_LT(offset_, message->total_size());
return message->total_size() - offset_;
}
RawChannel::RawChannel()
: delegate_(NULL),
message_loop_for_io_(NULL),
read_stopped_(false),
write_stopped_(false),
weak_ptr_factory_(this) {
}
RawChannel::~RawChannel() {
DCHECK(!read_buffer_);
DCHECK(!write_buffer_);
// No need to take the |write_lock_| here -- if there are still weak pointers
// outstanding, then we're hosed anyway (since we wouldn't be able to
// invalidate them cleanly, since we might not be on the I/O thread).
DCHECK(!weak_ptr_factory_.HasWeakPtrs());
}
bool RawChannel::Init(Delegate* delegate) {
DCHECK(delegate);
DCHECK(!delegate_);
delegate_ = delegate;
CHECK_EQ(base::MessageLoop::current()->type(), base::MessageLoop::TYPE_IO);
DCHECK(!message_loop_for_io_);
message_loop_for_io_ =
static_cast<base::MessageLoopForIO*>(base::MessageLoop::current());
// No need to take the lock. No one should be using us yet.
DCHECK(!read_buffer_);
read_buffer_.reset(new ReadBuffer);
DCHECK(!write_buffer_);
write_buffer_.reset(new WriteBuffer);
if (!OnInit())
return false;
return ScheduleRead() == IO_PENDING;
}
void RawChannel::Shutdown() {
DCHECK_EQ(base::MessageLoop::current(), message_loop_for_io_);
base::AutoLock locker(write_lock_);
LOG_IF(WARNING, !write_buffer_->message_queue_.empty())
<< "Shutting down RawChannel with write buffer nonempty";
weak_ptr_factory_.InvalidateWeakPtrs();
read_stopped_ = true;
write_stopped_ = true;
OnShutdownNoLock(read_buffer_.Pass(), write_buffer_.Pass());
}
// Reminder: This must be thread-safe.
bool RawChannel::WriteMessage(scoped_ptr<MessageInTransit> message) {
DCHECK(message);
// TODO(vtl)
if (message->has_platform_handles()) {
NOTIMPLEMENTED();
return false;
}
base::AutoLock locker(write_lock_);
if (write_stopped_)
return false;
if (!write_buffer_->message_queue_.empty()) {
write_buffer_->message_queue_.push_back(message.release());
return true;
}
write_buffer_->message_queue_.push_front(message.release());
DCHECK_EQ(write_buffer_->offset_, 0u);
size_t bytes_written = 0;
IOResult io_result = WriteNoLock(&bytes_written);
if (io_result == IO_PENDING)
return true;
bool result = OnWriteCompletedNoLock(io_result == IO_SUCCEEDED,
bytes_written);
if (!result) {
// Even if we're on the I/O thread, don't call |OnFatalError()| in the
// nested context.
message_loop_for_io_->PostTask(
FROM_HERE,
base::Bind(&RawChannel::CallOnFatalError,
weak_ptr_factory_.GetWeakPtr(),
Delegate::FATAL_ERROR_FAILED_WRITE));
}
return result;
}
// Reminder: This must be thread-safe.
bool RawChannel::IsWriteBufferEmpty() {
base::AutoLock locker(write_lock_);
return write_buffer_->message_queue_.empty();
}
RawChannel::ReadBuffer* RawChannel::read_buffer() {
DCHECK_EQ(base::MessageLoop::current(), message_loop_for_io_);
return read_buffer_.get();
}
RawChannel::WriteBuffer* RawChannel::write_buffer_no_lock() {
write_lock_.AssertAcquired();
return write_buffer_.get();
}
void RawChannel::OnReadCompleted(bool result, size_t bytes_read) {
DCHECK_EQ(base::MessageLoop::current(), message_loop_for_io_);
if (read_stopped_) {
NOTREACHED();
return;
}
IOResult io_result = result ? IO_SUCCEEDED : IO_FAILED;
// Keep reading data in a loop, and dispatch messages if enough data is
// received. Exit the loop if any of the following happens:
// - one or more messages were dispatched;
// - the last read failed, was a partial read or would block;
// - |Shutdown()| was called.
do {
if (io_result != IO_SUCCEEDED) {
read_stopped_ = true;
CallOnFatalError(Delegate::FATAL_ERROR_FAILED_READ);
return;
}
read_buffer_->num_valid_bytes_ += bytes_read;
// Dispatch all the messages that we can.
bool did_dispatch_message = false;
// Tracks the offset of the first undispatched message in |read_buffer_|.
// Currently, we copy data to ensure that this is zero at the beginning.
size_t read_buffer_start = 0;
size_t remaining_bytes = read_buffer_->num_valid_bytes_;
size_t message_size;
// Note that we rely on short-circuit evaluation here:
// - |read_buffer_start| may be an invalid index into
// |read_buffer_->buffer_| if |remaining_bytes| is zero.
// - |message_size| is only valid if |GetNextMessageSize()| returns true.
// TODO(vtl): Use |message_size| more intelligently (e.g., to request the
// next read).
// TODO(vtl): Validate that |message_size| is sane.
while (remaining_bytes > 0 &&
MessageInTransit::GetNextMessageSize(
&read_buffer_->buffer_[read_buffer_start], remaining_bytes,
&message_size) &&
remaining_bytes >= message_size) {
MessageInTransit::View
message_view(message_size, &read_buffer_->buffer_[read_buffer_start]);
DCHECK_EQ(message_view.total_size(), message_size);
// Dispatch the message.
delegate_->OnReadMessage(message_view);
if (read_stopped_) {
// |Shutdown()| was called in |OnReadMessage()|.
// TODO(vtl): Add test for this case.
return;
}
did_dispatch_message = true;
// Update our state.
read_buffer_start += message_size;
remaining_bytes -= message_size;
}
if (read_buffer_start > 0) {
// Move data back to start.
read_buffer_->num_valid_bytes_ = remaining_bytes;
if (read_buffer_->num_valid_bytes_ > 0) {
memmove(&read_buffer_->buffer_[0],
&read_buffer_->buffer_[read_buffer_start], remaining_bytes);
}
read_buffer_start = 0;
}
if (read_buffer_->buffer_.size() - read_buffer_->num_valid_bytes_ <
kReadSize) {
// Use power-of-2 buffer sizes.
// TODO(vtl): Make sure the buffer doesn't get too large (and enforce the
// maximum message size to whatever extent necessary).
// TODO(vtl): We may often be able to peek at the header and get the real
// required extra space (which may be much bigger than |kReadSize|).
size_t new_size = std::max(read_buffer_->buffer_.size(), kReadSize);
while (new_size < read_buffer_->num_valid_bytes_ + kReadSize)
new_size *= 2;
// TODO(vtl): It's suboptimal to zero out the fresh memory.
read_buffer_->buffer_.resize(new_size, 0);
}
// (1) If we dispatched any messages, stop reading for now (and let the
// message loop do its thing for another round).
// TODO(vtl): Is this the behavior we want? (Alternatives: i. Dispatch only
// a single message. Risks: slower, more complex if we want to avoid lots of
// copying. ii. Keep reading until there's no more data and dispatch all the
// messages we can. Risks: starvation of other users of the message loop.)
// (2) If we didn't max out |kReadSize|, stop reading for now.
bool schedule_for_later = did_dispatch_message || bytes_read < kReadSize;
bytes_read = 0;
io_result = schedule_for_later ? ScheduleRead() : Read(&bytes_read);
} while (io_result != IO_PENDING);
}
void RawChannel::OnWriteCompleted(bool result, size_t bytes_written) {
DCHECK_EQ(base::MessageLoop::current(), message_loop_for_io_);
bool did_fail = false;
{
base::AutoLock locker(write_lock_);
DCHECK_EQ(write_stopped_, write_buffer_->message_queue_.empty());
if (write_stopped_) {
NOTREACHED();
return;
}
did_fail = !OnWriteCompletedNoLock(result, bytes_written);
}
if (did_fail)
CallOnFatalError(Delegate::FATAL_ERROR_FAILED_WRITE);
}
void RawChannel::CallOnFatalError(Delegate::FatalError fatal_error) {
DCHECK_EQ(base::MessageLoop::current(), message_loop_for_io_);
// TODO(vtl): Add a "write_lock_.AssertNotAcquired()"?
delegate_->OnFatalError(fatal_error);
}
bool RawChannel::OnWriteCompletedNoLock(bool result, size_t bytes_written) {
write_lock_.AssertAcquired();
DCHECK(!write_stopped_);
DCHECK(!write_buffer_->message_queue_.empty());
if (result) {
if (bytes_written < write_buffer_->GetTotalBytesToWrite()) {
// Partial (or no) write.
write_buffer_->offset_ += bytes_written;
} else {
// Complete write.
DCHECK_EQ(bytes_written, write_buffer_->GetTotalBytesToWrite());
delete write_buffer_->message_queue_.front();
write_buffer_->message_queue_.pop_front();
write_buffer_->offset_ = 0;
}
if (write_buffer_->message_queue_.empty())
return true;
// Schedule the next write.
if (ScheduleWriteNoLock() == IO_PENDING)
return true;
}
write_stopped_ = true;
STLDeleteElements(&write_buffer_->message_queue_);
write_buffer_->offset_ = 0;
return false;
}
} // namespace system
} // namespace mojo
|