1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
|
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// TODO(vtl): The POSIX-specific bits have been factored out. Apply this test to
// non-POSIX once we have a non-POSIX implementation.
#include <stdint.h>
#include <string.h>
#include "base/basictypes.h"
#include "base/bind.h"
#include "base/location.h"
#include "base/logging.h"
#include "base/message_loop/message_loop.h"
#include "base/threading/thread.h"
#include "mojo/system/channel.h"
#include "mojo/system/local_message_pipe_endpoint.h"
#include "mojo/system/message_pipe.h"
#include "mojo/system/platform_channel_pair.h"
#include "mojo/system/proxy_message_pipe_endpoint.h"
#include "mojo/system/scoped_platform_handle.h"
#include "mojo/system/test_utils.h"
#include "mojo/system/waiter.h"
namespace mojo {
namespace system {
namespace {
class RemoteMessagePipeTest : public test::TestWithIOThreadBase {
public:
RemoteMessagePipeTest() {}
virtual ~RemoteMessagePipeTest() {}
virtual void SetUp() OVERRIDE {
test::TestWithIOThreadBase::SetUp();
test::PostTaskAndWait(io_thread_task_runner(),
FROM_HERE,
base::Bind(&RemoteMessagePipeTest::SetUpOnIOThread,
base::Unretained(this)));
}
virtual void TearDown() OVERRIDE {
test::PostTaskAndWait(io_thread_task_runner(),
FROM_HERE,
base::Bind(&RemoteMessagePipeTest::TearDownOnIOThread,
base::Unretained(this)));
test::TestWithIOThreadBase::TearDown();
}
// This connects MP 0, port 1 and MP 1, port 0 (leaving MP 0, port 0 and MP 1,
// port 1 as the user-visible endpoints) to channel 0 and 1, respectively. MP
// 0, port 1 and MP 1, port 0 must have |ProxyMessagePipeEndpoint|s.
void ConnectMessagePipes(scoped_refptr<MessagePipe> mp_0,
scoped_refptr<MessagePipe> mp_1) {
test::PostTaskAndWait(
io_thread_task_runner(),
FROM_HERE,
base::Bind(&RemoteMessagePipeTest::ConnectMessagePipesOnIOThread,
base::Unretained(this), mp_0, mp_1));
}
// This connects |mp|'s port |channel_index ^ 1| to channel |channel_index|.
// It assumes/requires that this is the bootstrap case, i.e., that the
// endpoint IDs are both/will both be |Channel::kBootstrapEndpointId|. This
// returns *without* waiting for it to finish connecting.
void BootstrapMessagePipeNoWait(unsigned channel_index,
scoped_refptr<MessagePipe> mp) {
io_thread_task_runner()->PostTask(
FROM_HERE,
base::Bind(&RemoteMessagePipeTest::BootstrapMessagePipeOnIOThread,
base::Unretained(this), channel_index, mp));
}
private:
void SetUpOnIOThread() {
CHECK_EQ(base::MessageLoop::current(), io_thread_message_loop());
PlatformChannelPair channel_pair;
platform_handles_[0] = channel_pair.PassServerHandle();
platform_handles_[1] = channel_pair.PassClientHandle();
}
void CreateAndInitChannel(unsigned channel_index) {
CHECK_EQ(base::MessageLoop::current(), io_thread_message_loop());
CHECK(channel_index == 0 || channel_index == 1);
CHECK(!channels_[channel_index].get());
channels_[channel_index] = new Channel();
CHECK(channels_[channel_index]->Init(
platform_handles_[channel_index].Pass()));
}
void ConnectMessagePipesOnIOThread(scoped_refptr<MessagePipe> mp_0,
scoped_refptr<MessagePipe> mp_1) {
CHECK_EQ(base::MessageLoop::current(), io_thread_message_loop());
if (!channels_[0].get())
CreateAndInitChannel(0);
if (!channels_[1].get())
CreateAndInitChannel(1);
MessageInTransit::EndpointId local_id_0 =
channels_[0]->AttachMessagePipeEndpoint(mp_0, 1);
MessageInTransit::EndpointId local_id_1 =
channels_[1]->AttachMessagePipeEndpoint(mp_1, 0);
channels_[0]->RunMessagePipeEndpoint(local_id_0, local_id_1);
channels_[1]->RunMessagePipeEndpoint(local_id_1, local_id_0);
}
void BootstrapMessagePipeOnIOThread(unsigned channel_index,
scoped_refptr<MessagePipe> mp) {
CHECK_EQ(base::MessageLoop::current(), io_thread_message_loop());
CHECK(channel_index == 0 || channel_index == 1);
unsigned port = channel_index ^ 1u;
// Important: If we don't boot
CreateAndInitChannel(channel_index);
CHECK_EQ(channels_[channel_index]->AttachMessagePipeEndpoint(mp, port),
Channel::kBootstrapEndpointId);
channels_[channel_index]->RunMessagePipeEndpoint(
Channel::kBootstrapEndpointId, Channel::kBootstrapEndpointId);
}
void TearDownOnIOThread() {
if (channels_[0].get()) {
channels_[0]->Shutdown();
channels_[0] = NULL;
}
if (channels_[1].get()) {
channels_[1]->Shutdown();
channels_[1] = NULL;
}
}
ScopedPlatformHandle platform_handles_[2];
scoped_refptr<Channel> channels_[2];
DISALLOW_COPY_AND_ASSIGN(RemoteMessagePipeTest);
};
TEST_F(RemoteMessagePipeTest, Basic) {
const char hello[] = "hello";
const char world[] = "world!!!1!!!1!";
char buffer[100] = { 0 };
uint32_t buffer_size = static_cast<uint32_t>(sizeof(buffer));
Waiter waiter;
// Connect message pipes. MP 0, port 1 will be attached to channel 0 and
// connected to MP 1, port 0, which will be attached to channel 1. This leaves
// MP 0, port 0 and MP 1, port 1 as the "user-facing" endpoints.
scoped_refptr<MessagePipe> mp_0(new MessagePipe(
scoped_ptr<MessagePipeEndpoint>(new LocalMessagePipeEndpoint()),
scoped_ptr<MessagePipeEndpoint>(new ProxyMessagePipeEndpoint())));
scoped_refptr<MessagePipe> mp_1(new MessagePipe(
scoped_ptr<MessagePipeEndpoint>(new ProxyMessagePipeEndpoint()),
scoped_ptr<MessagePipeEndpoint>(new LocalMessagePipeEndpoint())));
ConnectMessagePipes(mp_0, mp_1);
// Write in one direction: MP 0, port 0 -> ... -> MP 1, port 1.
// Prepare to wait on MP 1, port 1. (Add the waiter now. Otherwise, if we do
// it later, it might already be readable.)
waiter.Init();
EXPECT_EQ(MOJO_RESULT_OK,
mp_1->AddWaiter(1, &waiter, MOJO_WAIT_FLAG_READABLE, 123));
// Write to MP 0, port 0.
EXPECT_EQ(MOJO_RESULT_OK,
mp_0->WriteMessage(0,
hello, sizeof(hello),
NULL,
MOJO_WRITE_MESSAGE_FLAG_NONE));
// Wait.
EXPECT_EQ(123, waiter.Wait(MOJO_DEADLINE_INDEFINITE));
mp_1->RemoveWaiter(1, &waiter);
// Read from MP 1, port 1.
EXPECT_EQ(MOJO_RESULT_OK,
mp_1->ReadMessage(1,
buffer, &buffer_size,
NULL, NULL,
MOJO_READ_MESSAGE_FLAG_NONE));
EXPECT_EQ(sizeof(hello), static_cast<size_t>(buffer_size));
EXPECT_EQ(0, strcmp(buffer, hello));
// Write in the other direction: MP 1, port 1 -> ... -> MP 0, port 0.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_OK,
mp_0->AddWaiter(0, &waiter, MOJO_WAIT_FLAG_READABLE, 456));
EXPECT_EQ(MOJO_RESULT_OK,
mp_1->WriteMessage(1,
world, sizeof(world),
NULL,
MOJO_WRITE_MESSAGE_FLAG_NONE));
EXPECT_EQ(456, waiter.Wait(MOJO_DEADLINE_INDEFINITE));
mp_0->RemoveWaiter(0, &waiter);
buffer_size = static_cast<uint32_t>(sizeof(buffer));
EXPECT_EQ(MOJO_RESULT_OK,
mp_0->ReadMessage(0,
buffer, &buffer_size,
NULL, NULL,
MOJO_READ_MESSAGE_FLAG_NONE));
EXPECT_EQ(sizeof(world), static_cast<size_t>(buffer_size));
EXPECT_EQ(0, strcmp(buffer, world));
// Close MP 0, port 0.
mp_0->Close(0);
// Try to wait for MP 1, port 1 to become readable. This will eventually fail
// when it realizes that MP 0, port 0 has been closed. (It may also fail
// immediately.)
waiter.Init();
MojoResult result = mp_1->AddWaiter(1, &waiter, MOJO_WAIT_FLAG_READABLE, 789);
if (result == MOJO_RESULT_OK) {
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
waiter.Wait(MOJO_DEADLINE_INDEFINITE));
mp_1->RemoveWaiter(1, &waiter);
} else {
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION, result);
}
// And MP 1, port 1.
mp_1->Close(1);
}
TEST_F(RemoteMessagePipeTest, Multiplex) {
const char hello[] = "hello";
const char world[] = "world!!!1!!!1!";
char buffer[100] = { 0 };
uint32_t buffer_size = static_cast<uint32_t>(sizeof(buffer));
Waiter waiter;
// Connect message pipes as in the |Basic| test.
scoped_refptr<MessagePipe> mp_0(new MessagePipe(
scoped_ptr<MessagePipeEndpoint>(new LocalMessagePipeEndpoint()),
scoped_ptr<MessagePipeEndpoint>(new ProxyMessagePipeEndpoint())));
scoped_refptr<MessagePipe> mp_1(new MessagePipe(
scoped_ptr<MessagePipeEndpoint>(new ProxyMessagePipeEndpoint()),
scoped_ptr<MessagePipeEndpoint>(new LocalMessagePipeEndpoint())));
ConnectMessagePipes(mp_0, mp_1);
// Now put another message pipe on the channel.
scoped_refptr<MessagePipe> mp_2(new MessagePipe(
scoped_ptr<MessagePipeEndpoint>(new LocalMessagePipeEndpoint()),
scoped_ptr<MessagePipeEndpoint>(new ProxyMessagePipeEndpoint())));
scoped_refptr<MessagePipe> mp_3(new MessagePipe(
scoped_ptr<MessagePipeEndpoint>(new ProxyMessagePipeEndpoint()),
scoped_ptr<MessagePipeEndpoint>(new LocalMessagePipeEndpoint())));
ConnectMessagePipes(mp_2, mp_3);
// Write: MP 2, port 0 -> MP 3, port 1.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_OK,
mp_3->AddWaiter(1, &waiter, MOJO_WAIT_FLAG_READABLE, 789));
EXPECT_EQ(MOJO_RESULT_OK,
mp_2->WriteMessage(0,
hello, sizeof(hello),
NULL,
MOJO_WRITE_MESSAGE_FLAG_NONE));
EXPECT_EQ(789, waiter.Wait(MOJO_DEADLINE_INDEFINITE));
mp_3->RemoveWaiter(1, &waiter);
// Make sure there's nothing on MP 0, port 0 or MP 1, port 1 or MP 2, port 0.
buffer_size = static_cast<uint32_t>(sizeof(buffer));
EXPECT_EQ(MOJO_RESULT_SHOULD_WAIT,
mp_0->ReadMessage(0,
buffer, &buffer_size,
NULL, NULL,
MOJO_READ_MESSAGE_FLAG_NONE));
buffer_size = static_cast<uint32_t>(sizeof(buffer));
EXPECT_EQ(MOJO_RESULT_SHOULD_WAIT,
mp_1->ReadMessage(1,
buffer, &buffer_size,
NULL, NULL,
MOJO_READ_MESSAGE_FLAG_NONE));
buffer_size = static_cast<uint32_t>(sizeof(buffer));
EXPECT_EQ(MOJO_RESULT_SHOULD_WAIT,
mp_2->ReadMessage(0,
buffer, &buffer_size,
NULL, NULL,
MOJO_READ_MESSAGE_FLAG_NONE));
// Read from MP 3, port 1.
buffer_size = static_cast<uint32_t>(sizeof(buffer));
EXPECT_EQ(MOJO_RESULT_OK,
mp_3->ReadMessage(1,
buffer, &buffer_size,
NULL, NULL,
MOJO_READ_MESSAGE_FLAG_NONE));
EXPECT_EQ(sizeof(hello), static_cast<size_t>(buffer_size));
EXPECT_EQ(0, strcmp(buffer, hello));
// Write: MP 0, port 0 -> MP 1, port 1 again.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_OK,
mp_1->AddWaiter(1, &waiter, MOJO_WAIT_FLAG_READABLE, 123));
EXPECT_EQ(MOJO_RESULT_OK,
mp_0->WriteMessage(0,
world, sizeof(world),
NULL,
MOJO_WRITE_MESSAGE_FLAG_NONE));
EXPECT_EQ(123, waiter.Wait(MOJO_DEADLINE_INDEFINITE));
mp_1->RemoveWaiter(1, &waiter);
// Make sure there's nothing on the other ports.
buffer_size = static_cast<uint32_t>(sizeof(buffer));
EXPECT_EQ(MOJO_RESULT_SHOULD_WAIT,
mp_0->ReadMessage(0,
buffer, &buffer_size,
NULL, NULL,
MOJO_READ_MESSAGE_FLAG_NONE));
buffer_size = static_cast<uint32_t>(sizeof(buffer));
EXPECT_EQ(MOJO_RESULT_SHOULD_WAIT,
mp_2->ReadMessage(0,
buffer, &buffer_size,
NULL, NULL,
MOJO_READ_MESSAGE_FLAG_NONE));
buffer_size = static_cast<uint32_t>(sizeof(buffer));
EXPECT_EQ(MOJO_RESULT_SHOULD_WAIT,
mp_3->ReadMessage(1,
buffer, &buffer_size,
NULL, NULL,
MOJO_READ_MESSAGE_FLAG_NONE));
buffer_size = static_cast<uint32_t>(sizeof(buffer));
EXPECT_EQ(MOJO_RESULT_OK,
mp_1->ReadMessage(1,
buffer, &buffer_size,
NULL, NULL,
MOJO_READ_MESSAGE_FLAG_NONE));
EXPECT_EQ(sizeof(world), static_cast<size_t>(buffer_size));
EXPECT_EQ(0, strcmp(buffer, world));
}
TEST_F(RemoteMessagePipeTest, CloseBeforeConnect) {
const char hello[] = "hello";
char buffer[100] = { 0 };
uint32_t buffer_size = static_cast<uint32_t>(sizeof(buffer));
Waiter waiter;
// Connect message pipes. MP 0, port 1 will be attached to channel 0 and
// connected to MP 1, port 0, which will be attached to channel 1. This leaves
// MP 0, port 0 and MP 1, port 1 as the "user-facing" endpoints.
scoped_refptr<MessagePipe> mp_0(new MessagePipe(
scoped_ptr<MessagePipeEndpoint>(new LocalMessagePipeEndpoint()),
scoped_ptr<MessagePipeEndpoint>(new ProxyMessagePipeEndpoint())));
// Write to MP 0, port 0.
EXPECT_EQ(MOJO_RESULT_OK,
mp_0->WriteMessage(0,
hello, sizeof(hello),
NULL,
MOJO_WRITE_MESSAGE_FLAG_NONE));
BootstrapMessagePipeNoWait(0, mp_0);
// Close MP 0, port 0 before channel 1 is even connected.
mp_0->Close(0);
scoped_refptr<MessagePipe> mp_1(new MessagePipe(
scoped_ptr<MessagePipeEndpoint>(new ProxyMessagePipeEndpoint()),
scoped_ptr<MessagePipeEndpoint>(new LocalMessagePipeEndpoint())));
// Prepare to wait on MP 1, port 1. (Add the waiter now. Otherwise, if we do
// it later, it might already be readable.)
waiter.Init();
EXPECT_EQ(MOJO_RESULT_OK,
mp_1->AddWaiter(1, &waiter, MOJO_WAIT_FLAG_READABLE, 123));
BootstrapMessagePipeNoWait(1, mp_1);
// Wait.
EXPECT_EQ(123, waiter.Wait(MOJO_DEADLINE_INDEFINITE));
mp_1->RemoveWaiter(1, &waiter);
// Read from MP 1, port 1.
EXPECT_EQ(MOJO_RESULT_OK,
mp_1->ReadMessage(1,
buffer, &buffer_size,
NULL, NULL,
MOJO_READ_MESSAGE_FLAG_NONE));
EXPECT_EQ(sizeof(hello), static_cast<size_t>(buffer_size));
EXPECT_EQ(0, strcmp(buffer, hello));
// And MP 1, port 1.
mp_1->Close(1);
}
} // namespace
} // namespace system
} // namespace mojo
|