1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
|
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/base/dnssec_chain_verifier.h"
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "base/sha1.h"
#include "base/string_util.h"
#include "crypto/sha2.h"
#include "net/base/asn1_util.h"
#include "net/base/dns_util.h"
#include "net/base/dnssec_keyset.h"
// We don't have a location for the spec yet, so we'll include it here until it
// finds a better home.
/*
When connecting to a host www.example.com, www.example.com may present a certificate which includes a DNSSEC chain embedded in it. The aim of the embedded chain is to prove that the fingerprint of the public key is valid DNSSEC data. This is achieved by proving a CERT record for the target domain.
Initially, the target domain is constructed by prepending _ssl. For example, the initial target domain for www.example.com is _ssl.www.example.com.
A DNSSEC chain verifier can be in one of two states: entering a zone, or within a zone. Initially, the verifier is entering the root zone.
When entering a zone, the verifier reads the following structure:
uint8 entryKey
uint16 signature length:
// See RRSIG RDATA in RFC 4043 for details
uint8 algorithm
uint8 labels
uint32 ttl
uint32 expires
uint32 begins
uint16 keyid
[]byte signature
uint8 numKeys
// for each key:
uint16 key length:
[]byte DNSKEY RDATA
|entryKey| indexes the array of DNSKEYs and MUST be less than |numKeys|. The indexed DNSKEY MUST be a key that the verifier trusts, either because it's the long-term root key, or because of a previously presented DS signature.
If only a trusted key is needed within this zone, then the signature length MAY be zero. In which case, |entryKey| MUST be 0 and |numKeys| MUST be 1.
After processing this data, the verifier trusts one or more keys for this zone.
When within a zone, the verifier reads the following structure:
dnsName name
uint16 RRtype
|name| is in DNS format (a series of 8-bit, length prefixed strings). No DNS name compression is permitted.
|name| must be closer to the current target domain than the current zone. Here, 'closer' is defined as a greater number of matching labels when comparing right to left.
|RRtype| may be either DS, CERT or CNAME:
DS: this indicates a zone transition to a new zone named |name|. The verifier reads the following structure:
uint16 signature length:
... (see above for the signature structure)
uint8 num_ds
// for each DS:
uint8 digest_type
uint16 length
[]byte DS DATA
The verifier is now entering the named zone. It reads ahead and extracts the entry key from the zone entry data and synthisises a DS record for the given digest type and verifies the signature. It then enters the next zone.
CERT: |name| MUST match the target domain. The verifier reads the following structure:
uint16 signature length:
... (see above for the signature structure)
[]byte CERT RDATA
(The format of the CERT RDATA isn't specified here, but the verifier must be able to extract a public key fingerprint in order to validate the original certificate.)
This terminates the verification. There MUST NOT be any more data in the chain.
CNAME: |name| MUST match the target domain. The verifier reads the following structure:
uint16 signature length:
... (see above for the signature structure)
[]byte CNAME RDATA
This replaces the target domain with a new domain. The new domain is the target of the CNAME with _ssl prepended. The verifier is now in the zone that is the greatest common ancestor of the old and new target domains. (For example, when switching from _ssl.www.example.com to _ssl.www.example2.com, the verifier is now in com.)
Example for www.google.com:
The target domain is www.google.com.
The verifier enters ., it already trusts the long-term root key and both root keys are presented in order to extend the trust to the smaller root key.
A DS signature is presented for .com. The verifier is now entering .com.
All four .com keys are presented. The verifier is now in .com.
A DS signature is presented for google.com. The verifier is now entering google.com
As google.com contains only a single DNSKEY, it is included without a signature. The verifier is now in google.com.
A CNAME is presented for www.google.com pointing to www.l.google.com. The target domain is now www.l.google.com. The verifier is now in google.com.
A DS signature is presented for l.google.com. The verifier is now entering l.google.com.
As l.google.com contains only a single DNSKEY, it is included without a signature. The verifier is now in l.google.com.
A CERT record is presented for www.l.google.com. The verification is complete.
*/
namespace {
// This is the 2048-bit DNS root key: http://www.iana.org/dnssec
// 19036 8 2 49AAC11D7B6F6446702E54A1607371607A1A41855200FD2CE1CDDE32F24E8FB5
const unsigned char kRootKey[] = {
0x01, 0x01, 0x03, 0x08, 0x03, 0x01, 0x00, 0x01, 0xa8, 0x00, 0x20, 0xa9, 0x55,
0x66, 0xba, 0x42, 0xe8, 0x86, 0xbb, 0x80, 0x4c, 0xda, 0x84, 0xe4, 0x7e, 0xf5,
0x6d, 0xbd, 0x7a, 0xec, 0x61, 0x26, 0x15, 0x55, 0x2c, 0xec, 0x90, 0x6d, 0x21,
0x16, 0xd0, 0xef, 0x20, 0x70, 0x28, 0xc5, 0x15, 0x54, 0x14, 0x4d, 0xfe, 0xaf,
0xe7, 0xc7, 0xcb, 0x8f, 0x00, 0x5d, 0xd1, 0x82, 0x34, 0x13, 0x3a, 0xc0, 0x71,
0x0a, 0x81, 0x18, 0x2c, 0xe1, 0xfd, 0x14, 0xad, 0x22, 0x83, 0xbc, 0x83, 0x43,
0x5f, 0x9d, 0xf2, 0xf6, 0x31, 0x32, 0x51, 0x93, 0x1a, 0x17, 0x6d, 0xf0, 0xda,
0x51, 0xe5, 0x4f, 0x42, 0xe6, 0x04, 0x86, 0x0d, 0xfb, 0x35, 0x95, 0x80, 0x25,
0x0f, 0x55, 0x9c, 0xc5, 0x43, 0xc4, 0xff, 0xd5, 0x1c, 0xbe, 0x3d, 0xe8, 0xcf,
0xd0, 0x67, 0x19, 0x23, 0x7f, 0x9f, 0xc4, 0x7e, 0xe7, 0x29, 0xda, 0x06, 0x83,
0x5f, 0xa4, 0x52, 0xe8, 0x25, 0xe9, 0xa1, 0x8e, 0xbc, 0x2e, 0xcb, 0xcf, 0x56,
0x34, 0x74, 0x65, 0x2c, 0x33, 0xcf, 0x56, 0xa9, 0x03, 0x3b, 0xcd, 0xf5, 0xd9,
0x73, 0x12, 0x17, 0x97, 0xec, 0x80, 0x89, 0x04, 0x1b, 0x6e, 0x03, 0xa1, 0xb7,
0x2d, 0x0a, 0x73, 0x5b, 0x98, 0x4e, 0x03, 0x68, 0x73, 0x09, 0x33, 0x23, 0x24,
0xf2, 0x7c, 0x2d, 0xba, 0x85, 0xe9, 0xdb, 0x15, 0xe8, 0x3a, 0x01, 0x43, 0x38,
0x2e, 0x97, 0x4b, 0x06, 0x21, 0xc1, 0x8e, 0x62, 0x5e, 0xce, 0xc9, 0x07, 0x57,
0x7d, 0x9e, 0x7b, 0xad, 0xe9, 0x52, 0x41, 0xa8, 0x1e, 0xbb, 0xe8, 0xa9, 0x01,
0xd4, 0xd3, 0x27, 0x6e, 0x40, 0xb1, 0x14, 0xc0, 0xa2, 0xe6, 0xfc, 0x38, 0xd1,
0x9c, 0x2e, 0x6a, 0xab, 0x02, 0x64, 0x4b, 0x28, 0x13, 0xf5, 0x75, 0xfc, 0x21,
0x60, 0x1e, 0x0d, 0xee, 0x49, 0xcd, 0x9e, 0xe9, 0x6a, 0x43, 0x10, 0x3e, 0x52,
0x4d, 0x62, 0x87, 0x3d,
};
// kRootKeyID is the key id for kRootKey
const uint16 kRootKeyID = 19036;
// CountLabels returns the number of DNS labels in |a|, which must be in DNS,
// length-prefixed form.
unsigned CountLabels(base::StringPiece a) {
for (unsigned c = 0;; c++) {
if (!a.size())
return c;
uint8 label_len = a.data()[0];
a.remove_prefix(1);
DCHECK_GE(a.size(), label_len);
a.remove_prefix(label_len);
}
}
// RemoveLeadingLabel removes the first label from |a|, which must be in DNS,
// length-prefixed form.
void RemoveLeadingLabel(base::StringPiece* a) {
if (!a->size())
return;
uint8 label_len = a->data()[0];
a->remove_prefix(1);
a->remove_prefix(label_len);
}
} // namespace
namespace net {
struct DNSSECChainVerifier::Zone {
base::StringPiece name;
// The number of consecutive labels which |name| shares with |target_|,
// counting right-to-left from the root.
unsigned matching_labels;
DNSSECKeySet trusted_keys;
Zone* prev;
};
DNSSECChainVerifier::DNSSECChainVerifier(const std::string& target,
const base::StringPiece& chain)
: current_zone_(NULL),
target_(target),
chain_(chain),
ignore_timestamps_(false),
valid_(false),
already_entered_zone_(false),
rrtype_(0) {
}
DNSSECChainVerifier::~DNSSECChainVerifier() {
for (std::vector<void*>::iterator
i = scratch_pool_.begin(); i != scratch_pool_.end(); i++) {
free(*i);
}
Zone* next;
for (Zone* cur = current_zone_; cur; cur = next) {
next = cur->prev;
delete cur;
}
}
void DNSSECChainVerifier::IgnoreTimestamps() {
ignore_timestamps_ = true;
}
DNSSECChainVerifier::Error DNSSECChainVerifier::Verify() {
Error err;
err = EnterRoot();
if (err != OK)
return err;
for (;;) {
base::StringPiece next_name;
err = LeaveZone(&next_name);
if (err != OK)
return err;
if (valid_) {
if (!chain_.empty())
return BAD_DATA; // no trailing data allowed.
break;
}
if (already_entered_zone_) {
already_entered_zone_ = false;
} else {
err = EnterZone(next_name);
if (err != OK)
return err;
}
}
return OK;
}
uint16 DNSSECChainVerifier::rrtype() const {
DCHECK(valid_);
return rrtype_;
}
const std::vector<base::StringPiece>& DNSSECChainVerifier::rrdatas() const {
DCHECK(valid_);
return rrdatas_;
}
// MatchingLabels returns the number of labels which |a| and |b| share,
// counting right-to-left from the root. |a| and |b| must be DNS,
// length-prefixed names. All names match at the root label, so this always
// returns a value >= 1.
// static
unsigned DNSSECChainVerifier::MatchingLabels(base::StringPiece a,
base::StringPiece b) {
unsigned c = 0;
unsigned a_labels = CountLabels(a);
unsigned b_labels = CountLabels(b);
while (a_labels > b_labels) {
RemoveLeadingLabel(&a);
a_labels--;
}
while (b_labels > a_labels) {
RemoveLeadingLabel(&b);
b_labels--;
}
for (;;) {
if (!a.size()) {
if (!b.size())
return c;
return 0;
}
if (!b.size())
return 0;
uint8 a_length = a.data()[0];
a.remove_prefix(1);
uint8 b_length = b.data()[0];
b.remove_prefix(1);
DCHECK_GE(a.size(), a_length);
DCHECK_GE(b.size(), b_length);
if (a_length == b_length && memcmp(a.data(), b.data(), a_length) == 0) {
c++;
} else {
c = 0;
}
a.remove_prefix(a_length);
b.remove_prefix(b_length);
}
}
// U8 reads, and removes, a single byte from |chain_|
bool DNSSECChainVerifier::U8(uint8* v) {
if (chain_.size() < 1)
return false;
*v = chain_[0];
chain_.remove_prefix(1);
return true;
}
// U16 reads, and removes, a big-endian uint16 from |chain_|
bool DNSSECChainVerifier::U16(uint16* v) {
if (chain_.size() < 2)
return false;
const uint8* data = reinterpret_cast<const uint8*>(chain_.data());
*v = static_cast<uint16>(data[0]) << 8 |
static_cast<uint16>(data[1]);
chain_.remove_prefix(2);
return true;
}
// VariableLength16 reads, and removes, a big-endian, uint16, length-prefixed
// chunk from |chain_|
bool DNSSECChainVerifier::VariableLength16(base::StringPiece* v) {
uint16 length;
if (!U16(&length))
return false;
if (chain_.size() < length)
return false;
*v = chain_.substr(0, length);
chain_.remove_prefix(length);
return true;
}
// ReadName reads, and removes, an 8-bit length prefixed DNS name from |chain_|
bool DNSSECChainVerifier::ReadName(base::StringPiece* v) {
base::StringPiece saved = chain_;
unsigned length = 0;
static const uint8 kMaxDNSLabelLen = 63;
for (;;) {
if (chain_.size() < 1)
return false;
uint8 label_len = chain_.data()[0];
chain_.remove_prefix(1);
if (label_len > kMaxDNSLabelLen)
return false;
length += 1 + label_len;
if (label_len == 0)
break;
if (chain_.size() < label_len)
return false;
chain_.remove_prefix(label_len);
}
*v = base::StringPiece(saved.data(), length);
return true;
}
// ReadAheadEntryKey returns the entry key when |chain_| is positioned at the
// start of a zone.
bool DNSSECChainVerifier::ReadAheadEntryKey(base::StringPiece* v) {
base::StringPiece saved = chain_;
uint8 entry_key;
base::StringPiece sig;
if (!U8(&entry_key) ||
!VariableLength16(&sig)) {
return false;
}
if (!ReadAheadKey(v, entry_key))
return false;
chain_ = saved;
return true;
}
// ReadAheadKey returns the entry key when |chain_| is positioned at the start
// of a list of keys.
bool DNSSECChainVerifier::ReadAheadKey(base::StringPiece* v, uint8 entry_key) {
base::StringPiece saved = chain_;
uint8 num_keys;
if (!U8(&num_keys))
return false;
for (unsigned i = 0; i < num_keys; i++) {
if (!VariableLength16(v))
return false;
if (i == entry_key) {
chain_ = saved;
return true;
}
}
return false;
}
bool DNSSECChainVerifier::ReadDNSKEYs(std::vector<base::StringPiece>* out,
bool is_root) {
uint8 num_keys;
if (!U8(&num_keys))
return false;
for (unsigned i = 0; i < num_keys; i++) {
base::StringPiece key;
if (!VariableLength16(&key))
return false;
if (key.empty()) {
if (!is_root)
return false;
key = base::StringPiece(reinterpret_cast<const char*>(kRootKey),
sizeof(kRootKey));
}
out->push_back(key);
}
return true;
}
// DigestKey calculates a DS digest as specified in
// http://tools.ietf.org/html/rfc4034#section-5.1.4
// name: the DNS form name of the key
// dnskey: the DNSKEY's RRDATA
// digest_type: see http://tools.ietf.org/html/rfc4034#appendix-A.2
// keyid: the key's id
// algorithm: see http://tools.ietf.org/html/rfc4034#appendix-A.1
bool DNSSECChainVerifier::DigestKey(base::StringPiece* out,
const base::StringPiece& name,
const base::StringPiece& dnskey,
uint8 digest_type,
uint16 keyid,
uint8 algorithm) {
std::string temp;
uint8 temp2[crypto::kSHA256Length];
const uint8* digest;
unsigned digest_len;
std::string input = name.as_string() + dnskey.as_string();
if (digest_type == kDNSSEC_SHA1) {
temp = base::SHA1HashString(input);
digest = reinterpret_cast<const uint8*>(temp.data());
digest_len = base::kSHA1Length;
} else if (digest_type == kDNSSEC_SHA256) {
crypto::SHA256HashString(input, temp2, sizeof(temp2));
digest = temp2;
digest_len = sizeof(temp2);
} else {
return false;
}
uint8* output = static_cast<uint8*>(malloc(4 + digest_len));
scratch_pool_.push_back(output);
output[0] = static_cast<uint8>(keyid >> 8);
output[1] = static_cast<uint8>(keyid);
output[2] = algorithm;
output[3] = digest_type;
memcpy(output + 4, digest, digest_len);
*out = base::StringPiece(reinterpret_cast<char*>(output), 4 + digest_len);
return true;
}
// EnterRoot enters the root zone at the beginning of the chain. This is
// special because no DS record lead us here: we have to validate that the
// entry key is the DNS root key that we already know and trust. Additionally,
// for the root zone only, the keyid of the entry key is prepended to the data.
DNSSECChainVerifier::Error DNSSECChainVerifier::EnterRoot() {
uint16 root_keyid;
if (!U16(&root_keyid))
return BAD_DATA;
if (root_keyid != kRootKeyID)
return UNKNOWN_ROOT_KEY;
base::StringPiece root_key;
if (!ReadAheadEntryKey(&root_key))
return BAD_DATA;
// If the root key is given then it must match the expected root key exactly.
if (root_key.size()) {
if (root_key.size() != sizeof(kRootKey) ||
memcmp(root_key.data(), kRootKey, sizeof(kRootKey))) {
return UNKNOWN_ROOT_KEY;
}
}
base::StringPiece root("", 1);
return EnterZone(root);
}
// EnterZone enters a new DNS zone. On entry it's assumed that the entry key
// has been validated.
DNSSECChainVerifier::Error DNSSECChainVerifier::EnterZone(
const base::StringPiece& zone) {
Zone* prev = current_zone_;
current_zone_ = new Zone;
current_zone_->prev = prev;
current_zone_->name = zone;
current_zone_->matching_labels = MatchingLabels(target_, zone);
if (ignore_timestamps_)
current_zone_->trusted_keys.IgnoreTimestamps();
uint8 entry_key;
base::StringPiece sig;
if (!U8(&entry_key) ||
!VariableLength16(&sig)) {
return BAD_DATA;
}
base::StringPiece key;
if (!ReadAheadKey(&key, entry_key))
return BAD_DATA;
if (zone.size() == 1 && key.empty()) {
// If a key is omitted in the root zone then it's the root key.
key = base::StringPiece(reinterpret_cast<const char*>(kRootKey),
sizeof(kRootKey));
}
if (!current_zone_->trusted_keys.AddKey(key))
return BAD_DATA;
std::vector<base::StringPiece> dnskeys;
if (!ReadDNSKEYs(&dnskeys, zone.size() == 1))
return BAD_DATA;
if (sig.empty()) {
// An omitted signature on the keys means that only the entry key is used.
if (dnskeys.size() > 1 || entry_key != 0)
return BAD_DATA;
return OK;
}
if (!current_zone_->trusted_keys.CheckSignature(
zone, zone, sig, kDNS_DNSKEY, dnskeys)) {
return BAD_SIGNATURE;
}
// Add all the keys as trusted.
for (unsigned i = 0; i < dnskeys.size(); i++) {
if (i == entry_key)
continue;
current_zone_->trusted_keys.AddKey(dnskeys[i]);
}
return OK;
}
// LeaveZone transitions out of the current zone, either by following DS
// records to validate the entry key of the next zone, or because the final
// resource records are given.
DNSSECChainVerifier::Error DNSSECChainVerifier::LeaveZone(
base::StringPiece* next_name) {
base::StringPiece sig;
uint16 rrtype;
Error err;
if (!ReadName(next_name) ||
!U16(&rrtype) ||
!VariableLength16(&sig)) {
return BAD_DATA;
}
std::vector<base::StringPiece> rrdatas;
if (rrtype == kDNS_DS) {
err = ReadDSSet(&rrdatas, *next_name);
} else if (rrtype == kDNS_CERT || rrtype == kDNS_TXT || rrtype == kDNS_CAA) {
err = ReadGenericRRs(&rrdatas);
} else if (rrtype == kDNS_CNAME) {
err = ReadCNAME(&rrdatas);
} else {
return UNKNOWN_TERMINAL_RRTYPE;
}
if (err != OK)
return err;
if (!current_zone_->trusted_keys.CheckSignature(
*next_name, current_zone_->name, sig, rrtype, rrdatas)) {
return BAD_SIGNATURE;
}
if (rrtype == kDNS_DS) {
// If we are transitioning to another zone then the next zone must be
// 'closer' to the target than the current zone.
if (MatchingLabels(target_, *next_name) <= current_zone_->matching_labels)
return OFF_COURSE;
} else if (rrtype == kDNS_CERT || rrtype == kDNS_TXT || rrtype == kDNS_CAA) {
// If this is the final entry in the chain then the name must match target_
if (next_name->size() != target_.size() ||
memcmp(next_name->data(), target_.data(), target_.size())) {
return BAD_TARGET;
}
rrdatas_ = rrdatas;
valid_ = true;
rrtype_ = rrtype;
} else if (rrtype == kDNS_CNAME) {
// A CNAME must match the current target. Then we update the current target
// and unwind the chain to the closest common ancestor.
if (next_name->size() != target_.size() ||
memcmp(next_name->data(), target_.data(), target_.size())) {
return BAD_TARGET;
}
DCHECK_EQ(1u, rrdatas.size());
target_ = rrdatas[0].as_string();
// We unwind the zones until the current zone is a (non-strict) subset of
// the new target.
while (MatchingLabels(target_, current_zone_->name) <
CountLabels(current_zone_->name)) {
Zone* prev = current_zone_->prev;
delete current_zone_;
current_zone_ = prev;
if (!current_zone_) {
NOTREACHED();
return BAD_DATA;
}
}
already_entered_zone_ = true;
} else {
NOTREACHED();
return UNKNOWN_TERMINAL_RRTYPE;
}
return OK;
}
// ReadDSSet reads a set of DS records from the chain. DS records which are
// omitted are calculated from the entry key of the next zone.
DNSSECChainVerifier::Error DNSSECChainVerifier::ReadDSSet(
std::vector<base::StringPiece>* rrdatas,
const base::StringPiece& next_name) {
uint8 num_ds;
if (!U8(&num_ds))
return BAD_DATA;
scoped_array<uint8> digest_types(new uint8[num_ds]);
// lookahead[i] is true iff the i'th DS record was empty and needs to be
// computed by hashing the next entry key.
scoped_array<bool> lookahead(new bool[num_ds]);
rrdatas->resize(num_ds);
for (unsigned i = 0; i < num_ds; i++) {
uint8 digest_type;
base::StringPiece digest;
if (!U8(&digest_type) ||
!VariableLength16(&digest)) {
return BAD_DATA;
}
digest_types[i] = digest_type;
lookahead[i] = digest.empty();
if (!digest.empty())
(*rrdatas)[i] = digest;
}
base::StringPiece next_entry_key;
if (!ReadAheadEntryKey(&next_entry_key))
return BAD_DATA;
if (next_entry_key.size() < 4)
return BAD_DATA;
uint16 keyid = DNSSECKeySet::DNSKEYToKeyID(next_entry_key);
uint8 algorithm = next_entry_key[3];
bool good = false;
for (unsigned i = 0; i < num_ds; i++) {
base::StringPiece digest;
bool have_digest = false;
if (DigestKey(&digest, next_name, next_entry_key, digest_types[i],
keyid, algorithm)) {
have_digest = true;
}
if (lookahead[i]) {
// If we needed to fill in one of the DS entries, but we can't calculate
// that type of digest, then we can't continue.
if (!have_digest)
return UNKNOWN_DIGEST;
(*rrdatas)[i] = digest;
good = true;
} else {
const base::StringPiece& given_digest = (*rrdatas)[i];
if (have_digest &&
given_digest.size() == digest.size() &&
memcmp(given_digest.data(), digest.data(), digest.size()) == 0) {
good = true;
}
}
}
if (!good) {
// We didn't calculate or match any of the digests.
return NO_DS_LINK;
}
return OK;
}
DNSSECChainVerifier::Error DNSSECChainVerifier::ReadGenericRRs(
std::vector<base::StringPiece>* rrdatas) {
uint8 num_rrs;
if (!U8(&num_rrs))
return BAD_DATA;
rrdatas->resize(num_rrs);
for (unsigned i = 0; i < num_rrs; i++) {
base::StringPiece rrdata;
if (!VariableLength16(&rrdata))
return BAD_DATA;
(*rrdatas)[i] = rrdata;
}
return OK;
}
DNSSECChainVerifier::Error DNSSECChainVerifier::ReadCNAME(
std::vector<base::StringPiece>* rrdatas) {
base::StringPiece name;
if (!ReadName(&name))
return BAD_DATA;
rrdatas->resize(1);
(*rrdatas)[0] = name;
return OK;
}
struct CAAHashTargetOID {
uint8 length;
uint8 bytes[13];
DnsCAARecord::Policy::HashTarget value;
};
// kCAAHashTargets maps from the DER encoding of a hash target OID to our
// internal enumeration values.
static CAAHashTargetOID kCAAHashTargets[] = {
{ 5, "\x06\x03\x55\x04\x24", DnsCAARecord::Policy::USER_CERTIFICATE },
{ 5, "\x06\x03\x55\x04\x25", DnsCAARecord::Policy::CA_CERTIFICATE },
{ 12 , "\x06\x0a\x2b\x06\x01\x04\x01\xd6\x79\x02\x03\x01",
DnsCAARecord::Policy::SUBJECT_PUBLIC_KEY_INFO},
{ 0 },
};
struct CAAHashFunctionOID {
uint8 length;
uint8 bytes[12];
int value;
};
// The values here are taken from NSS's freebl/hasht.h. Sadly, we cannot
// include it because it pulls in #defines that conflict with Chromium headers.
// However, these values are part of NSS's public API and so are stable.
static const int kHashSHA256 = 4;
static const int kHashSHA384 = 5;
static const int kHashSHA512 = 6;
// kCAAHashFunctions maps from the DER encoding of hash function OIDs to NSS's
// hash function enumeration.
static CAAHashFunctionOID kCAAHashFunctions[] = {
{ 11, "\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x01", kHashSHA256 },
{ 11, "\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x02", kHashSHA384 },
{ 11, "\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x03", kHashSHA512 },
// WARNING: if you update this, be sure to update DigestLength too.
{ 0 },
};
// DigestLength returns the expected length of the digest for a given hash
// function.
static unsigned DigestLength(int algorithm) {
switch (algorithm) {
case kHashSHA256:
return 32;
case kHashSHA384:
return 48;
case kHashSHA512:
return 64;
default:
CHECK_NE(algorithm, algorithm);
return 0;
}
}
DnsCAARecord::Policy::Policy() {
}
DnsCAARecord::Policy::~Policy() {
}
// ParseEnumeratedOID parses an OID from |i| and sets |*result| to one of the
// values from |values|, depending on the OID found. |i| is then advanced over
// the OID.
//
// If no OID is found then DISCARD is returned, unless |critical| is true, in
// which case |UNKNOWN_CRITICAL| is returned.
template<typename A, typename Enum>
static DnsCAARecord::ParseResult ParseEnumeratedOID(base::StringPiece* i,
bool critical,
const A* values,
Enum* result) {
base::StringPiece element;
if (!asn1::ParseElement(i, asn1::kOID, &element, NULL))
return DnsCAARecord::SYNTAX_ERROR;
unsigned j;
for (j = 0; values[j].length; j++) {
if (element.size() == values[j].length &&
memcmp(element.data(), values[j].bytes, element.size()) == 0) {
*result = values[j].value;
return DnsCAARecord::SUCCESS;
}
}
if (critical)
return DnsCAARecord::UNKNOWN_CRITICAL;
return DnsCAARecord::DISCARD;
}
// static
DnsCAARecord::ParseResult DnsCAARecord::Parse(
const std::vector<base::StringPiece>& rrdatas,
DnsCAARecord::Policy* output) {
// see http://tools.ietf.org/html/draft-hallambaker-donotissue-04
output->authorized_hashes.clear();
for (std::vector<base::StringPiece>::const_iterator
ii = rrdatas.begin(); ii != rrdatas.end(); ++ii) {
base::StringPiece i = *ii;
if (i.size() < 2)
return SYNTAX_ERROR;
const bool critical = (i[0] & 128) != 0;
const bool must_be_zero = (i[0] & 4) != 0;
const bool relying_use = (i[0] & 2) != 0;
const unsigned tag_length = i[1];
i.remove_prefix(2);
if (must_be_zero)
return UNKNOWN_CRITICAL;
if (!relying_use)
continue;
if (tag_length == 0 || tag_length > i.size())
return SYNTAX_ERROR;
const std::string tag(i.data(), tag_length);
i.remove_prefix(tag_length);
if (tag_length == 4 && LowerCaseEqualsASCII(tag, "auth")) {
Policy::Hash hash;
// AuthData ::= SEQUENCE {
// odi ObjectDigestIdentifier
// port INTEGER
// }
// ObjectDigestIdentifier ::= SEQUENCE {
// type OBJECT IDENTIFIER,
// digestAlgorithm OBJECT IDENTIFIER,
// digest OCTET STRING
// }
base::StringPiece seq;
if (!asn1::GetElement(&i, asn1::kSEQUENCE, &seq))
return SYNTAX_ERROR;
base::StringPiece odi;
if (!asn1::GetElement(&seq, asn1::kSEQUENCE, &odi))
return SYNTAX_ERROR;
// type
ParseResult r = ParseEnumeratedOID(&odi, critical, kCAAHashTargets,
&hash.target);
if (r == DISCARD)
continue;
if (r != SUCCESS)
return r;
// hash function
r = ParseEnumeratedOID(&odi, critical, kCAAHashFunctions,
&hash.algorithm);
if (r == DISCARD)
continue;
if (r != SUCCESS)
return r;
base::StringPiece hash_bytes;
if (!asn1::GetElement(&odi, asn1::kOCTETSTRING, &hash_bytes))
return SYNTAX_ERROR;
if (hash_bytes.size() != DigestLength(hash.algorithm))
return SYNTAX_ERROR;
hash.data = hash_bytes.as_string();
base::StringPiece port_bytes;
if (!asn1::GetElement(&seq, asn1::kINTEGER, &port_bytes))
return SYNTAX_ERROR;
// The port is 1, 2 or 3 bytes. The three byte form is needed because
// values >= 0x8000 would be treated as signed unless padded with a
// leading zero byte.
if (port_bytes.size() == 0 || port_bytes.size() > 3)
return SYNTAX_ERROR;
hash.port = reinterpret_cast<const uint8*>(port_bytes.data())[0];
if (port_bytes.size() > 1) {
hash.port <<= 8;
hash.port |= reinterpret_cast<const uint8*>(port_bytes.data())[1];
}
if (port_bytes.size() > 2) {
hash.port <<= 8;
hash.port |= reinterpret_cast<const uint8*>(port_bytes.data())[2];
}
if (hash.port > 65535)
return SYNTAX_ERROR;
output->authorized_hashes.push_back(hash);
} else if (critical) {
return UNKNOWN_CRITICAL;
}
}
if (output->authorized_hashes.empty())
return DISCARD;
return SUCCESS;
}
} // namespace net
|