1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/base/ip_endpoint.h"
#include "base/string_number_conversions.h"
#include "net/base/net_util.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "testing/platform_test.h"
#if defined(OS_WIN)
#include <winsock2.h>
#elif defined(OS_POSIX)
#include <netinet/in.h>
#endif
namespace net {
namespace {
struct TestData {
std::string host;
std::string host_normalized;
bool ipv6;
IPAddressNumber ip_address;
} tests[] = {
{ "127.0.00.1", "127.0.0.1", false},
{ "192.168.1.1", "192.168.1.1", false },
{ "::1", "[::1]", true },
{ "2001:db8:0::42", "[2001:db8::42]", true },
};
int test_count = ARRAYSIZE_UNSAFE(tests);
class IPEndPointTest : public PlatformTest {
public:
virtual void SetUp() {
// This is where we populate the TestData.
for (int index = 0; index < test_count; ++index) {
EXPECT_TRUE(ParseIPLiteralToNumber(tests[index].host,
&tests[index].ip_address));
}
}
};
TEST_F(IPEndPointTest, Constructor) {
IPEndPoint endpoint;
EXPECT_EQ(0, endpoint.port());
for (int index = 0; index < test_count; ++index) {
IPEndPoint endpoint(tests[index].ip_address, 80);
EXPECT_EQ(80, endpoint.port());
EXPECT_EQ(tests[index].ip_address, endpoint.address());
}
}
TEST_F(IPEndPointTest, Assignment) {
for (int index = 0; index < test_count; ++index) {
IPEndPoint src(tests[index].ip_address, index);
IPEndPoint dest = src;
EXPECT_EQ(src.port(), dest.port());
EXPECT_EQ(src.address(), dest.address());
}
}
TEST_F(IPEndPointTest, Copy) {
for (int index = 0; index < test_count; ++index) {
IPEndPoint src(tests[index].ip_address, index);
IPEndPoint dest(src);
EXPECT_EQ(src.port(), dest.port());
EXPECT_EQ(src.address(), dest.address());
}
}
TEST_F(IPEndPointTest, ToFromSockAddr) {
for (int index = 0; index < test_count; ++index) {
IPEndPoint ip_endpoint(tests[index].ip_address, index);
// Convert to a sockaddr.
SockaddrStorage storage;
EXPECT_TRUE(ip_endpoint.ToSockAddr(storage.addr, &storage.addr_len));
// Basic verification.
socklen_t expected_size = tests[index].ipv6 ?
sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in);
EXPECT_EQ(expected_size, storage.addr_len);
EXPECT_EQ(ip_endpoint.port(), GetPortFromSockaddr(storage.addr,
storage.addr_len));
// And convert back to an IPEndPoint.
IPEndPoint ip_endpoint2;
EXPECT_TRUE(ip_endpoint2.FromSockAddr(storage.addr, storage.addr_len));
EXPECT_EQ(ip_endpoint.port(), ip_endpoint2.port());
EXPECT_EQ(ip_endpoint.address(), ip_endpoint2.address());
}
}
TEST_F(IPEndPointTest, ToSockAddrBufTooSmall) {
for (int index = 0; index < test_count; ++index) {
IPEndPoint ip_endpoint(tests[index].ip_address, index);
SockaddrStorage storage;
storage.addr_len = index; // size is too small!
EXPECT_FALSE(ip_endpoint.ToSockAddr(storage.addr, &storage.addr_len));
}
}
TEST_F(IPEndPointTest, FromSockAddrBufTooSmall) {
struct sockaddr_in addr;
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
IPEndPoint ip_endpoint;
struct sockaddr* sockaddr = reinterpret_cast<struct sockaddr*>(&addr);
EXPECT_FALSE(ip_endpoint.FromSockAddr(sockaddr, sizeof(addr) - 1));
}
TEST_F(IPEndPointTest, Equality) {
for (int index = 0; index < test_count; ++index) {
IPEndPoint src(tests[index].ip_address, index);
IPEndPoint dest(src);
EXPECT_TRUE(src == dest);
}
}
TEST_F(IPEndPointTest, LessThan) {
// Vary by port.
IPEndPoint ip_endpoint1(tests[0].ip_address, 100);
IPEndPoint ip_endpoint2(tests[0].ip_address, 1000);
EXPECT_TRUE(ip_endpoint1 < ip_endpoint2);
EXPECT_FALSE(ip_endpoint2 < ip_endpoint1);
// IPv4 vs IPv6
ip_endpoint1 = IPEndPoint(tests[0].ip_address, 81);
ip_endpoint2 = IPEndPoint(tests[2].ip_address, 80);
EXPECT_TRUE(ip_endpoint1 < ip_endpoint2);
EXPECT_FALSE(ip_endpoint2 < ip_endpoint1);
// IPv4 vs IPv4
ip_endpoint1 = IPEndPoint(tests[0].ip_address, 81);
ip_endpoint2 = IPEndPoint(tests[1].ip_address, 80);
EXPECT_TRUE(ip_endpoint1 < ip_endpoint2);
EXPECT_FALSE(ip_endpoint2 < ip_endpoint1);
// IPv6 vs IPv6
ip_endpoint1 = IPEndPoint(tests[2].ip_address, 81);
ip_endpoint2 = IPEndPoint(tests[3].ip_address, 80);
EXPECT_TRUE(ip_endpoint1 < ip_endpoint2);
EXPECT_FALSE(ip_endpoint2 < ip_endpoint1);
// Compare equivalent endpoints.
ip_endpoint1 = IPEndPoint(tests[0].ip_address, 80);
ip_endpoint2 = IPEndPoint(tests[0].ip_address, 80);
EXPECT_FALSE(ip_endpoint1 < ip_endpoint2);
EXPECT_FALSE(ip_endpoint2 < ip_endpoint1);
}
TEST_F(IPEndPointTest, ToString) {
IPEndPoint endpoint;
EXPECT_EQ(0, endpoint.port());
for (int index = 0; index < test_count; ++index) {
int port = 100 + index;
IPEndPoint endpoint(tests[index].ip_address, port);
const std::string result = endpoint.ToString();
if (tests[index].ipv6 && result.empty()) {
// NetAddressToStringWithPort may fail on systems without IPv6.
continue;
}
EXPECT_EQ(tests[index].host_normalized + ":" + base::IntToString(port),
result);
}
}
} // namespace
} // namespace net
|