1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
|
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/base/keygen_handler.h"
#include <windows.h>
#include <wincrypt.h>
#pragma comment(lib, "crypt32.lib")
#include <rpc.h>
#pragma comment(lib, "rpcrt4.lib")
#include <list>
#include <string>
#include <vector>
#include "base/base64.h"
#include "base/basictypes.h"
#include "base/logging.h"
#include "base/string_piece.h"
#include "base/utf_string_conversions.h"
namespace net {
// TODO(rsleevi): The following encoding functions are adapted from
// base/crypto/rsa_private_key.h and can/should probably be refactored.
static const uint8 kSequenceTag = 0x30;
void PrependLength(size_t size, std::list<BYTE>* data) {
// The high bit is used to indicate whether additional octets are needed to
// represent the length.
if (size < 0x80) {
data->push_front(static_cast<BYTE>(size));
} else {
uint8 num_bytes = 0;
while (size > 0) {
data->push_front(static_cast<BYTE>(size & 0xFF));
size >>= 8;
num_bytes++;
}
CHECK_LE(num_bytes, 4);
data->push_front(0x80 | num_bytes);
}
}
void PrependTypeHeaderAndLength(uint8 type, uint32 length,
std::vector<BYTE>* output) {
std::list<BYTE> type_and_length;
PrependLength(length, &type_and_length);
type_and_length.push_front(type);
output->insert(output->begin(), type_and_length.begin(),
type_and_length.end());
}
bool EncodeAndAppendType(LPCSTR type, const void* to_encode,
std::vector<BYTE>* output) {
BOOL ok;
DWORD size = 0;
ok = CryptEncodeObject(X509_ASN_ENCODING, type, to_encode, NULL, &size);
DCHECK(ok);
if (!ok)
return false;
std::vector<BYTE>::size_type old_size = output->size();
output->resize(old_size + size);
ok = CryptEncodeObject(X509_ASN_ENCODING, type, to_encode,
&(*output)[old_size], &size);
DCHECK(ok);
if (!ok)
return false;
// Sometimes the initial call to CryptEncodeObject gave a generous estimate
// of the size, so shrink back to what was actually used.
output->resize(old_size + size);
return true;
}
// Appends a DER IA5String containing |challenge| to |output|.
// Returns true if encoding was successful.
bool EncodeChallenge(const std::string& challenge, std::vector<BYTE>* output) {
CERT_NAME_VALUE challenge_nv;
challenge_nv.dwValueType = CERT_RDN_IA5_STRING;
challenge_nv.Value.pbData = const_cast<BYTE*>(
reinterpret_cast<const BYTE*>(challenge.data()));
challenge_nv.Value.cbData = challenge.size();
return EncodeAndAppendType(X509_ANY_STRING, &challenge_nv, output);
}
// Appends a DER SubjectPublicKeyInfo structure for the signing key in |prov|
// to |output|.
// Returns true if encoding was successful.
bool EncodeSubjectPublicKeyInfo(HCRYPTPROV prov, std::vector<BYTE>* output) {
BOOL ok;
DWORD size = 0;
// From the private key stored in HCRYPTPROV, obtain the public key, stored
// as a CERT_PUBLIC_KEY_INFO structure. Currently, only RSA public keys are
// supported.
ok = CryptExportPublicKeyInfoEx(prov, AT_KEYEXCHANGE, X509_ASN_ENCODING,
szOID_RSA_RSA, 0, NULL, NULL, &size);
DCHECK(ok);
if (!ok)
return false;
std::vector<BYTE> public_key_info(size);
PCERT_PUBLIC_KEY_INFO public_key_casted =
reinterpret_cast<PCERT_PUBLIC_KEY_INFO>(&public_key_info[0]);
ok = CryptExportPublicKeyInfoEx(prov, AT_KEYEXCHANGE, X509_ASN_ENCODING,
szOID_RSA_RSA, 0, NULL, public_key_casted,
&size);
DCHECK(ok);
if (!ok)
return false;
public_key_info.resize(size);
return EncodeAndAppendType(X509_PUBLIC_KEY_INFO, &public_key_info[0],
output);
}
// Generates an ASN.1 DER representation of the PublicKeyAndChallenge structure
// from the signing key of |prov| and the specified |challenge| and appends it
// to |output|.
// True if the the encoding was successfully generated.
bool GetPublicKeyAndChallenge(HCRYPTPROV prov, const std::string& challenge,
std::vector<BYTE>* output) {
if (!EncodeSubjectPublicKeyInfo(prov, output) ||
!EncodeChallenge(challenge, output)) {
return false;
}
PrependTypeHeaderAndLength(kSequenceTag, output->size(), output);
return true;
}
// Generates a DER encoded SignedPublicKeyAndChallenge structure from the
// signing key of |prov| and the specified |challenge| string and appends it
// to |output|.
// True if the encoding was successfully generated.
bool GetSignedPublicKeyAndChallenge(HCRYPTPROV prov,
const std::string& challenge,
std::string* output) {
std::vector<BYTE> pkac;
if (!GetPublicKeyAndChallenge(prov, challenge, &pkac))
return false;
std::vector<BYTE> signature;
std::vector<BYTE> signed_pkac;
DWORD size = 0;
BOOL ok;
// While the MSDN documentation states that CERT_SIGNED_CONTENT_INFO should
// be an X.509 certificate type, for encoding this is not necessary. The
// result of encoding this structure will be a DER-encoded structure with
// the ASN.1 equivalent of
// ::= SEQUENCE {
// ToBeSigned IMPLICIT OCTET STRING,
// SignatureAlgorithm AlgorithmIdentifier,
// Signature BIT STRING
// }
//
// This happens to be the same naive type as an SPKAC, so this works.
CERT_SIGNED_CONTENT_INFO info;
info.ToBeSigned.cbData = pkac.size();
info.ToBeSigned.pbData = &pkac[0];
info.SignatureAlgorithm.pszObjId = szOID_RSA_MD5RSA;
info.SignatureAlgorithm.Parameters.cbData = 0;
info.SignatureAlgorithm.Parameters.pbData = NULL;
ok = CryptSignCertificate(prov, AT_KEYEXCHANGE, X509_ASN_ENCODING,
info.ToBeSigned.pbData, info.ToBeSigned.cbData,
&info.SignatureAlgorithm, NULL, NULL, &size);
DCHECK(ok);
if (!ok)
return false;
signature.resize(size);
info.Signature.cbData = signature.size();
info.Signature.pbData = &signature[0];
info.Signature.cUnusedBits = 0;
ok = CryptSignCertificate(prov, AT_KEYEXCHANGE, X509_ASN_ENCODING,
info.ToBeSigned.pbData, info.ToBeSigned.cbData,
&info.SignatureAlgorithm, NULL,
info.Signature.pbData, &info.Signature.cbData);
DCHECK(ok);
if (!ok || !EncodeAndAppendType(X509_CERT, &info, &signed_pkac))
return false;
output->assign(reinterpret_cast<char*>(&signed_pkac[0]),
signed_pkac.size());
return true;
}
// Generates a unique name for the container which will store the key that is
// generated. The traditional Windows approach is to use a GUID here.
std::wstring GetNewKeyContainerId() {
RPC_STATUS status = RPC_S_OK;
std::wstring result;
UUID id = { 0 };
status = UuidCreateSequential(&id);
if (status != RPC_S_OK && status != RPC_S_UUID_LOCAL_ONLY)
return result;
RPC_WSTR rpc_string = NULL;
status = UuidToString(&id, &rpc_string);
if (status != RPC_S_OK)
return result;
// RPC_WSTR is unsigned short*. wchar_t is a built-in type of Visual C++,
// so the type cast is necessary.
result.assign(reinterpret_cast<wchar_t*>(rpc_string));
RpcStringFree(&rpc_string);
return result;
}
void StoreKeyLocationInCache(HCRYPTPROV prov) {
BOOL ok;
DWORD size = 0;
// Though it is known the container and provider name, as they are supplied
// during GenKeyAndSignChallenge, explicitly resolving them via
// CryptGetProvParam ensures that any defaults (such as provider name being
// NULL) or any CSP modifications to the container name are properly
// reflected.
// Find the container name. Though the MSDN documentation states it will
// return the exact same value as supplied when the provider was aquired, it
// also notes the return type will be CHAR, /not/ WCHAR.
ok = CryptGetProvParam(prov, PP_CONTAINER, NULL, &size, 0);
if (!ok)
return;
std::vector<BYTE> buffer(size);
ok = CryptGetProvParam(prov, PP_CONTAINER, &buffer[0], &size, 0);
if (!ok)
return;
KeygenHandler::KeyLocation key_location;
UTF8ToWide(reinterpret_cast<char*>(&buffer[0]), size,
&key_location.container_name);
// Get the provider name. This will always resolve, even if NULL (indicating
// the default provider) was supplied to the CryptAcquireContext.
size = 0;
ok = CryptGetProvParam(prov, PP_NAME, NULL, &size, 0);
if (!ok)
return;
buffer.resize(size);
ok = CryptGetProvParam(prov, PP_NAME, &buffer[0], &size, 0);
if (!ok)
return;
UTF8ToWide(reinterpret_cast<char*>(&buffer[0]), size,
&key_location.provider_name);
std::vector<BYTE> public_key_info;
if (!EncodeSubjectPublicKeyInfo(prov, &public_key_info))
return;
KeygenHandler::Cache* cache = KeygenHandler::Cache::GetInstance();
cache->Insert(std::string(public_key_info.begin(), public_key_info.end()),
key_location);
}
bool KeygenHandler::KeyLocation::Equals(
const KeygenHandler::KeyLocation& location) const {
return container_name == location.container_name &&
provider_name == location.provider_name;
}
std::string KeygenHandler::GenKeyAndSignChallenge() {
std::string result;
bool is_success = true;
HCRYPTPROV prov = NULL;
HCRYPTKEY key = NULL;
DWORD flags = (key_size_in_bits_ << 16) | CRYPT_EXPORTABLE;
std::string spkac;
std::wstring new_key_id;
// TODO(rsleevi): Have the user choose which provider they should use, which
// needs to be filtered by those providers which can provide the key type
// requested or the key size requested. This is especially important for
// generating certificates that will be stored on smart cards.
const int kMaxAttempts = 5;
BOOL ok = FALSE;
for (int attempt = 0; attempt < kMaxAttempts; ++attempt) {
// Per MSDN documentation for CryptAcquireContext, if applications will be
// creating their own keys, they should ensure unique naming schemes to
// prevent overlap with any other applications or consumers of CSPs, and
// *should not* store new keys within the default, NULL key container.
new_key_id = GetNewKeyContainerId();
if (new_key_id.empty())
return result;
// Only create new key containers, so that existing key containers are not
// overwritten.
ok = CryptAcquireContext(&prov, new_key_id.c_str(), NULL, PROV_RSA_FULL,
CRYPT_SILENT | CRYPT_NEWKEYSET);
if (ok || GetLastError() != NTE_BAD_KEYSET)
break;
}
if (!ok) {
LOG(ERROR) << "Couldn't acquire a CryptoAPI provider context: "
<< GetLastError();
is_success = false;
goto failure;
}
if (!CryptGenKey(prov, CALG_RSA_KEYX, flags, &key)) {
LOG(ERROR) << "Couldn't generate an RSA key";
is_success = false;
goto failure;
}
if (!GetSignedPublicKeyAndChallenge(prov, challenge_, &spkac)) {
LOG(ERROR) << "Couldn't generate the signed public key and challenge";
is_success = false;
goto failure;
}
if (!base::Base64Encode(spkac, &result)) {
LOG(ERROR) << "Couldn't convert signed key into base64";
is_success = false;
goto failure;
}
StoreKeyLocationInCache(prov);
failure:
if (!is_success) {
LOG(ERROR) << "SSL Keygen failed";
} else {
LOG(INFO) << "SSL Key succeeded";
}
if (key) {
// Securely destroys the handle, but leaves the underlying key alone. The
// key can be obtained again by resolving the key location. If
// |stores_key_| is false, the underlying key will be destroyed below.
CryptDestroyKey(key);
}
if (prov) {
CryptReleaseContext(prov, 0);
prov = NULL;
if (!stores_key_) {
// Fully destroys any of the keys that were created and releases prov.
CryptAcquireContext(&prov, new_key_id.c_str(), NULL, PROV_RSA_FULL,
CRYPT_SILENT | CRYPT_DELETEKEYSET);
}
}
return result;
}
} // namespace net
|