1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
|
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Detecting mime types is a tricky business because we need to balance
// compatibility concerns with security issues. Here is a survey of how other
// browsers behave and then a description of how we intend to behave.
//
// HTML payload, no Content-Type header:
// * IE 7: Render as HTML
// * Firefox 2: Render as HTML
// * Safari 3: Render as HTML
// * Opera 9: Render as HTML
//
// Here the choice seems clear:
// => Chrome: Render as HTML
//
// HTML payload, Content-Type: "text/plain":
// * IE 7: Render as HTML
// * Firefox 2: Render as text
// * Safari 3: Render as text (Note: Safari will Render as HTML if the URL
// has an HTML extension)
// * Opera 9: Render as text
//
// Here we choose to follow the majority (and break some compatibility with IE).
// Many folks dislike IE's behavior here.
// => Chrome: Render as text
// We generalize this as follows. If the Content-Type header is text/plain
// we won't detect dangerous mime types (those that can execute script).
//
// HTML payload, Content-Type: "application/octet-stream":
// * IE 7: Render as HTML
// * Firefox 2: Download as application/octet-stream
// * Safari 3: Render as HTML
// * Opera 9: Render as HTML
//
// We follow Firefox.
// => Chrome: Download as application/octet-stream
// One factor in this decision is that IIS 4 and 5 will send
// application/octet-stream for .xhtml files (because they don't recognize
// the extension). We did some experiments and it looks like this doesn't occur
// very often on the web. We choose the more secure option.
//
// GIF payload, no Content-Type header:
// * IE 7: Render as GIF
// * Firefox 2: Render as GIF
// * Safari 3: Download as Unknown (Note: Safari will Render as GIF if the
// URL has an GIF extension)
// * Opera 9: Render as GIF
//
// The choice is clear.
// => Chrome: Render as GIF
// Once we decide to render HTML without a Content-Type header, there isn't much
// reason not to render GIFs.
//
// GIF payload, Content-Type: "text/plain":
// * IE 7: Render as GIF
// * Firefox 2: Download as application/octet-stream (Note: Firefox will
// Download as GIF if the URL has an GIF extension)
// * Safari 3: Download as Unknown (Note: Safari will Render as GIF if the
// URL has an GIF extension)
// * Opera 9: Render as GIF
//
// Displaying as text/plain makes little sense as the content will look like
// gibberish. Here, we could change our minds and download.
// => Chrome: Render as GIF
//
// GIF payload, Content-Type: "application/octet-stream":
// * IE 7: Render as GIF
// * Firefox 2: Download as application/octet-stream (Note: Firefox will
// Download as GIF if the URL has an GIF extension)
// * Safari 3: Download as Unknown (Note: Safari will Render as GIF if the
// URL has an GIF extension)
// * Opera 9: Render as GIF
//
// We used to render as GIF here, but the problem is that some sites want to
// trigger downloads by sending application/octet-stream (even though they
// should be sending Content-Disposition: attachment). Although it is safe
// to render as GIF from a security perspective, we actually get better
// compatibility if we don't sniff from application/octet stream at all.
// => Chrome: Download as application/octet-stream
//
// XHTML payload, Content-Type: "text/xml":
// * IE 7: Render as XML
// * Firefox 2: Render as HTML
// * Safari 3: Render as HTML
// * Opera 9: Render as HTML
// The layout tests rely on us rendering this as HTML.
// But we're conservative in XHTML detection, as this runs afoul of the
// "don't detect dangerous mime types" rule.
//
// Note that our definition of HTML payload is much stricter than IE's
// definition and roughly the same as Firefox's definition.
#include <string>
#include "net/base/mime_sniffer.h"
#include "base/basictypes.h"
#include "base/histogram.h"
#include "base/logging.h"
#include "base/string_util.h"
#include "googleurl/src/gurl.h"
#include "net/base/mime_util.h"
namespace net {
// We aren't interested in looking at more than 512 bytes of content
static const size_t kMaxBytesToSniff = 512;
// The number of content bytes we need to use all our magic numbers. Feel free
// to increase this number if you add a longer magic number.
static const size_t kBytesRequiredForMagic = 42;
struct MagicNumber {
const char* mime_type;
const char* magic;
size_t magic_len;
bool is_string;
};
#define MAGIC_NUMBER(mime_type, magic) \
{ (mime_type), (magic), sizeof(magic)-1, false },
// Magic strings are case insensitive and must not include '\0' characters
#define MAGIC_STRING(mime_type, magic) \
{ (mime_type), (magic), sizeof(magic)-1, true },
static const MagicNumber kMagicNumbers[] = {
// Source: HTML 5 specification
MAGIC_NUMBER("application/pdf", "%PDF-")
MAGIC_NUMBER("application/postscript", "%!PS-Adobe-")
MAGIC_NUMBER("image/gif", "GIF87a")
MAGIC_NUMBER("image/gif", "GIF89a")
MAGIC_NUMBER("image/png", "\x89" "PNG\x0D\x0A\x1A\x0A")
MAGIC_NUMBER("image/jpeg", "\xFF\xD8\xFF")
MAGIC_NUMBER("image/bmp", "BM")
// Source: Mozilla
MAGIC_NUMBER("text/plain", "#!") // Script
MAGIC_NUMBER("text/plain", "%!") // Script, similar to PS
MAGIC_NUMBER("text/plain", "From")
MAGIC_NUMBER("text/plain", ">From")
// Chrome specific
MAGIC_NUMBER("application/x-gzip", "\x1F\x8B\x08")
MAGIC_NUMBER("audio/x-pn-realaudio", "\x2E\x52\x4D\x46")
MAGIC_NUMBER("video/x-ms-asf",
"\x30\x26\xB2\x75\x8E\x66\xCF\x11\xA6\xD9\x00\xAA\x00\x62\xCE\x6C")
MAGIC_NUMBER("image/tiff", "I I")
MAGIC_NUMBER("image/tiff", "II*")
MAGIC_NUMBER("image/tiff", "MM\x00*")
MAGIC_NUMBER("audio/mpeg", "ID3")
// TODO(abarth): we don't handle partial byte matches yet
// MAGIC_NUMBER("video/mpeg", "\x00\x00\x01\xB")
// MAGIC_NUMBER("audio/mpeg", "\xFF\xE")
// MAGIC_NUMBER("audio/mpeg", "\xFF\xF")
MAGIC_NUMBER("application/zip", "PK\x03\x04")
MAGIC_NUMBER("application/x-rar-compressed", "Rar!\x1A\x07\x00")
MAGIC_NUMBER("application/x-msmetafile", "\xD7\xCD\xC6\x9A")
MAGIC_NUMBER("application/octet-stream", "MZ") // EXE
// Sniffing for Flash:
//
// MAGIC_NUMBER("application/x-shockwave-flash", "CWS")
// MAGIC_NUMBER("application/x-shockwave-flash", "FLV")
// MAGIC_NUMBER("application/x-shockwave-flash", "FWS")
//
// Including these magic number for Flash is a trade off.
//
// Pros:
// * Flash is an important and popular file format
//
// Cons:
// * These patterns are fairly weak
// * If we mistakenly decide something is Flash, we will execute it
// in the origin of an unsuspecting site. This could be a security
// vulnerability if the site allows users to upload content.
//
// On balance, we do not include these patterns.
};
// Our HTML sniffer differs slightly from Mozilla. For example, Mozilla will
// decide that a document that begins "<!DOCTYPE SOAP-ENV:Envelope PUBLIC " is
// HTML, but we will not.
#define MAGIC_HTML_TAG(tag) \
MAGIC_STRING("text/html", "<" tag)
static const MagicNumber kSniffableTags[] = {
// XML processing directive. Although this is not an HTML mime type, we sniff
// for this in the HTML phase because text/xml is just as powerful as HTML and
// we want to leverage our white space skipping technology.
MAGIC_NUMBER("text/xml", "<?xml") // Mozilla
// DOCTYPEs
MAGIC_HTML_TAG("!DOCTYPE html") // HTML5 spec
// Sniffable tags, ordered by how often they occur in sniffable documents.
MAGIC_HTML_TAG("script") // HTML5 spec, Mozilla
MAGIC_HTML_TAG("html") // HTML5 spec, Mozilla
MAGIC_HTML_TAG("!--")
MAGIC_HTML_TAG("head") // HTML5 spec, Mozilla
MAGIC_HTML_TAG("iframe") // Mozilla
MAGIC_HTML_TAG("h1") // Mozilla
MAGIC_HTML_TAG("div") // Mozilla
MAGIC_HTML_TAG("font") // Mozilla
MAGIC_HTML_TAG("table") // Mozilla
MAGIC_HTML_TAG("a") // Mozilla
MAGIC_HTML_TAG("style") // Mozilla
MAGIC_HTML_TAG("title") // Mozilla
MAGIC_HTML_TAG("b") // Mozilla
MAGIC_HTML_TAG("body") // Mozilla
MAGIC_HTML_TAG("br")
MAGIC_HTML_TAG("p") // Mozilla
};
static scoped_refptr<Histogram> UMASnifferHistogramGet(const char* name,
int array_size) {
scoped_refptr<Histogram> counter =
LinearHistogram::FactoryGet(name, 1, array_size - 1, array_size,
Histogram::kUmaTargetedHistogramFlag);
return counter;
}
static bool MatchMagicNumber(const char* content, size_t size,
const MagicNumber* magic_entry,
std::string* result) {
const size_t len = magic_entry->magic_len;
// Keep kBytesRequiredForMagic honest.
DCHECK(len <= kBytesRequiredForMagic);
// To compare with magic strings, we need to compute strlen(content), but
// content might not actually have a null terminator. In that case, we
// pretend the length is content_size.
const char* end =
static_cast<const char*>(memchr(content, '\0', size));
const size_t content_strlen = (end != NULL) ? (end - content) : size;
bool match = false;
if (magic_entry->is_string) {
if (content_strlen >= len) {
// String comparisons are case-insensitive
match = (base::strncasecmp(magic_entry->magic, content, len) == 0);
}
} else {
if (size >= len)
match = (memcmp(magic_entry->magic, content, len) == 0);
}
if (match) {
result->assign(magic_entry->mime_type);
return true;
}
return false;
}
static bool CheckForMagicNumbers(const char* content, size_t size,
const MagicNumber* magic, size_t magic_len,
Histogram* counter, std::string* result) {
for (size_t i = 0; i < magic_len; ++i) {
if (MatchMagicNumber(content, size, &(magic[i]), result)) {
if (counter) counter->Add(static_cast<int>(i));
return true;
}
}
return false;
}
static bool SniffForHTML(const char* content, size_t size,
std::string* result) {
// We adopt a strategy similar to that used by Mozilla to sniff HTML tags,
// but with some modifications to better match the HTML5 spec.
const char* const end = content + size;
const char* pos;
for (pos = content; pos < end; ++pos) {
if (!IsAsciiWhitespace(*pos))
break;
}
static scoped_refptr<Histogram> counter =
UMASnifferHistogramGet("mime_sniffer.kSniffableTags2",
arraysize(kSniffableTags));
// |pos| now points to first non-whitespace character (or at end).
return CheckForMagicNumbers(pos, end - pos,
kSniffableTags, arraysize(kSniffableTags),
counter.get(), result);
}
static bool SniffForMagicNumbers(const char* content, size_t size,
std::string* result) {
// Check our big table of Magic Numbers
static scoped_refptr<Histogram> counter =
UMASnifferHistogramGet("mime_sniffer.kMagicNumbers2",
arraysize(kMagicNumbers));
return CheckForMagicNumbers(content, size,
kMagicNumbers, arraysize(kMagicNumbers),
counter.get(), result);
}
// Byte order marks
static const MagicNumber kMagicXML[] = {
// We want to be very conservative in interpreting text/xml content as
// XHTML -- we just want to sniff enough to make unit tests pass.
// So we match explicitly on this, and don't match other ways of writing
// it in semantically-equivalent ways.
MAGIC_STRING("application/xhtml+xml",
"<html xmlns=\"http://www.w3.org/1999/xhtml\"")
MAGIC_STRING("application/atom+xml", "<feed")
MAGIC_STRING("application/rss+xml", "<rss") // UTF-8
};
// Sniff an XML document to judge whether it contains XHTML or a feed.
// Returns true if it has seen enough content to make a definitive decision.
// TODO(evanm): this is similar but more conservative than what Safari does,
// while HTML5 has a different recommendation -- what should we do?
// TODO(evanm): this is incorrect for documents whose encoding isn't a superset
// of ASCII -- do we care?
static bool SniffXML(const char* content, size_t size, std::string* result) {
// We allow at most kFirstTagBytes bytes of content before we expect the
// opening tag.
const size_t kFeedAllowedHeaderBytes = 300;
const char* const end = content + std::min(size, kFeedAllowedHeaderBytes);
const char* pos = content;
// This loop iterates through tag-looking offsets in the file.
// We want to skip XML processing instructions (of the form "<?xml ...")
// and stop at the first "plain" tag, then make a decision on the mime-type
// based on the name (or possibly attributes) of that tag.
static scoped_refptr<Histogram> counter =
UMASnifferHistogramGet("mime_sniffer.kMagicXML2",
arraysize(kMagicXML));
const int kMaxTagIterations = 5;
for (int i = 0; i < kMaxTagIterations && pos < end; ++i) {
pos = reinterpret_cast<const char*>(memchr(pos, '<', end - pos));
if (!pos)
return false;
if (base::strncasecmp(pos, "<?xml", sizeof("<?xml")-1) == 0) {
// Skip XML declarations.
++pos;
continue;
} else if (base::strncasecmp(pos, "<!DOCTYPE",
sizeof("<!DOCTYPE")-1) == 0) {
// Skip DOCTYPE declarations.
++pos;
continue;
}
if (CheckForMagicNumbers(pos, end - pos,
kMagicXML, arraysize(kMagicXML),
counter.get(), result))
return true;
// TODO(evanm): handle RSS 1.0, which is an RDF format and more difficult
// to identify.
// If we get here, we've hit an initial tag that hasn't matched one of the
// above tests. Abort.
return true;
}
// We iterated too far without finding a start tag.
// If we have more content to look at, we aren't going to change our mind by
// seeing more bytes from the network.
return pos < end;
}
// Byte order marks
static const MagicNumber kByteOrderMark[] = {
MAGIC_NUMBER("text/plain", "\xFE\xFF") // UTF-16BE
MAGIC_NUMBER("text/plain", "\xFF\xFE") // UTF-16LE
MAGIC_NUMBER("text/plain", "\xEF\xBB\xBF") // UTF-8
};
// Whether a given byte looks like it might be part of binary content.
// Source: HTML5 spec
static char kByteLooksBinary[] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, // 0x00 - 0x0F
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, // 0x10 - 0x1F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x20 - 0x2F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x30 - 0x3F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x40 - 0x4F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x50 - 0x5F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x60 - 0x6F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x70 - 0x7F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x80 - 0x8F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x90 - 0x9F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xA0 - 0xAF
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xB0 - 0xBF
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xC0 - 0xCF
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xD0 - 0xDF
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xE0 - 0xEF
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xF0 - 0xFF
};
static bool LooksBinary(const char* content, size_t size) {
// First, we look for a BOM.
static scoped_refptr<Histogram> counter =
UMASnifferHistogramGet("mime_sniffer.kByteOrderMark2",
arraysize(kByteOrderMark));
std::string unused;
if (CheckForMagicNumbers(content, size,
kByteOrderMark, arraysize(kByteOrderMark),
counter.get(), &unused)) {
// If there is BOM, we think the buffer is not binary.
return false;
}
// Next we look to see if any of the bytes "look binary."
for (size_t i = 0; i < size; ++i) {
// If we a see a binary-looking byte, we think the content is binary.
if (kByteLooksBinary[static_cast<unsigned char>(content[i])])
return true;
}
// No evidence either way, default to non-binary.
return false;
}
static bool IsUnknownMimeType(const std::string& mime_type) {
// TODO(tc): Maybe reuse some code in net/http/http_response_headers.* here.
// If we do, please be careful not to alter the semantics at all.
static const char* kUnknownMimeTypes[] = {
// Empty mime types are as unknown as they get.
"",
// The unknown/unknown type is popular and uninformative
"unknown/unknown",
// The second most popular unknown mime type is application/unknown
"application/unknown",
// Firefox rejects a mime type if it is exactly */*
"*/*",
};
static scoped_refptr<Histogram> counter =
UMASnifferHistogramGet("mime_sniffer.kUnknownMimeTypes2",
arraysize(kUnknownMimeTypes) + 1);
for (size_t i = 0; i < arraysize(kUnknownMimeTypes); ++i) {
if (mime_type == kUnknownMimeTypes[i]) {
counter->Add(i);
return true;
}
}
if (mime_type.find('/') == std::string::npos) {
// Firefox rejects a mime type if it does not contain a slash
counter->Add(arraysize(kUnknownMimeTypes));
return true;
}
return false;
}
// Sniff a crx (chrome extension) file.
static bool SniffCRX(const char* content, size_t content_size, const GURL& url,
const std::string& type_hint, std::string* result) {
static scoped_refptr<Histogram> counter =
UMASnifferHistogramGet("mime_sniffer.kSniffCRX", 3);
// Technically, the crx magic number is just Cr24, but the bytes after that
// are a version number which changes infrequently. Including it in the
// sniffing gives us less room for error. If the version number ever changes,
// we can just add an entry to this list.
//
// TODO(aa): If we ever have another magic number, we'll want to pass a
// histogram into CheckForMagicNumbers(), below, to see which one matched.
const struct MagicNumber kCRXMagicNumbers[] = {
MAGIC_NUMBER("application/x-chrome-extension", "Cr24\x02\x00\x00\x00")
};
// Only consider files that have the extension ".crx".
const char kCRXExtension[] = ".crx";
const int kExtensionLength = arraysize(kCRXExtension) - 1; // ignore null
if (url.path().rfind(kCRXExtension, std::string::npos, kExtensionLength) ==
url.path().size() - kExtensionLength) {
counter->Add(1);
} else {
return false;
}
if (CheckForMagicNumbers(content, content_size,
kCRXMagicNumbers, arraysize(kCRXMagicNumbers),
NULL, result)) {
counter->Add(2);
} else {
return false;
}
return true;
}
bool ShouldSniffMimeType(const GURL& url, const std::string& mime_type) {
static scoped_refptr<Histogram> should_sniff_counter =
UMASnifferHistogramGet("mime_sniffer.ShouldSniffMimeType2", 3);
// We are willing to sniff the mime type for HTTP, HTTPS, and FTP
bool sniffable_scheme = url.is_empty() ||
url.SchemeIs("http") ||
url.SchemeIs("https") ||
url.SchemeIs("ftp");
if (!sniffable_scheme) {
should_sniff_counter->Add(1);
return false;
}
static const char* kSniffableTypes[] = {
// Many web servers are misconfigured to send text/plain for many
// different types of content.
"text/plain",
// We want to sniff application/octet-stream for
// application/x-chrome-extension, but nothing else.
"application/octet-stream",
// XHTML and Atom/RSS feeds are often served as plain xml instead of
// their more specific mime types.
"text/xml",
"application/xml",
};
static scoped_refptr<Histogram> counter =
UMASnifferHistogramGet("mime_sniffer.kSniffableTypes2",
arraysize(kSniffableTypes) + 1);
for (size_t i = 0; i < arraysize(kSniffableTypes); ++i) {
if (mime_type == kSniffableTypes[i]) {
counter->Add(i);
should_sniff_counter->Add(2);
return true;
}
}
if (IsUnknownMimeType(mime_type)) {
// The web server didn't specify a content type or specified a mime
// type that we ignore.
counter->Add(arraysize(kSniffableTypes));
should_sniff_counter->Add(2);
return true;
}
should_sniff_counter->Add(1);
return false;
}
bool SniffMimeType(const char* content, size_t content_size,
const GURL& url, const std::string& type_hint,
std::string* result) {
DCHECK_LT(content_size, 1000000U); // sanity check
DCHECK(content);
DCHECK(result);
// By default, we'll return the type hint.
result->assign(type_hint);
// Flag for tracking whether our decision was limited by content_size. We
// probably have enough content if we can use all our magic numbers.
const bool have_enough_content = content_size >= kBytesRequiredForMagic;
// We have an upper limit on the number of bytes we will consider.
if (content_size > kMaxBytesToSniff)
content_size = kMaxBytesToSniff;
// Cache information about the type_hint
const bool hint_is_unknown_mime_type = IsUnknownMimeType(type_hint);
// First check for HTML
if (hint_is_unknown_mime_type) {
// We're only willing to sniff HTML if the server has not supplied a mime
// type, or if the type it did supply indicates that it doesn't know what
// the type should be.
if (SniffForHTML(content, content_size, result))
return true; // We succeeded in sniffing HTML. No more content needed.
}
// We'll reuse this information later
const bool hint_is_text_plain = (type_hint == "text/plain");
const bool looks_binary = LooksBinary(content, content_size);
if (hint_is_text_plain && !looks_binary) {
// The server said the content was text/plain and we don't really have any
// evidence otherwise.
result->assign("text/plain");
return have_enough_content;
}
// If we have plain XML, sniff XML subtypes.
if (type_hint == "text/xml" || type_hint == "application/xml") {
// We're not interested in sniffing these types for images and the like.
// Instead, we're looking explicitly for a feed. If we don't find one we're
// done and return early.
if (SniffXML(content, content_size, result))
return true;
return content_size >= kMaxBytesToSniff;
}
// CRX files (chrome extensions) have a special sniffing algorithm. It is
// tighter than the others because we don't have to match legacy behavior.
if (SniffCRX(content, content_size, url, type_hint, result))
return true;
// We're not interested in sniffing for magic numbers when the type_hint
// is application/octet-stream. Time to bail out.
if (type_hint == "application/octet-stream")
return have_enough_content;
// Now we look in our large table of magic numbers to see if we can find
// anything that matches the content.
if (SniffForMagicNumbers(content, content_size, result))
return true; // We've matched a magic number. No more content needed.
// Having failed thus far, we're willing to override unknown mime types and
// text/plain.
if (hint_is_unknown_mime_type || hint_is_text_plain) {
if (looks_binary)
result->assign("application/octet-stream");
else
result->assign("text/plain");
// We could change our mind if a binary-looking byte appears later in
// the content, so we only have enough content if we have the max.
return content_size >= kMaxBytesToSniff;
}
return have_enough_content;
}
} // namespace net
|