1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
|
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/disk_cache/mem_entry_impl.h"
#include "base/logging.h"
#include "base/stringprintf.h"
#include "net/base/io_buffer.h"
#include "net/base/net_errors.h"
#include "net/disk_cache/mem_backend_impl.h"
#include "net/disk_cache/net_log_parameters.h"
using base::Time;
namespace {
const int kSparseData = 1;
// Maximum size of a sparse entry is 2 to the power of this number.
const int kMaxSparseEntryBits = 12;
// Sparse entry has maximum size of 4KB.
const int kMaxSparseEntrySize = 1 << kMaxSparseEntryBits;
// Convert global offset to child index.
inline int ToChildIndex(int64 offset) {
return static_cast<int>(offset >> kMaxSparseEntryBits);
}
// Convert global offset to offset in child entry.
inline int ToChildOffset(int64 offset) {
return static_cast<int>(offset & (kMaxSparseEntrySize - 1));
}
// Returns a name for a child entry given the base_name of the parent and the
// child_id. This name is only used for logging purposes.
// If the entry is called entry_name, child entries will be named something
// like Range_entry_name:YYY where YYY is the number of the particular child.
std::string GenerateChildName(const std::string& base_name, int child_id) {
return base::StringPrintf("Range_%s:%i", base_name.c_str(), child_id);
}
} // namespace
namespace disk_cache {
MemEntryImpl::MemEntryImpl(MemBackendImpl* backend) {
doomed_ = false;
backend_ = backend;
ref_count_ = 0;
parent_ = NULL;
child_id_ = 0;
child_first_pos_ = 0;
next_ = NULL;
prev_ = NULL;
for (int i = 0; i < NUM_STREAMS; i++)
data_size_[i] = 0;
}
// ------------------------------------------------------------------------
bool MemEntryImpl::CreateEntry(const std::string& key, net::NetLog* net_log) {
net_log_ = net::BoundNetLog::Make(net_log,
net::NetLog::SOURCE_MEMORY_CACHE_ENTRY);
net_log_.BeginEvent(
net::NetLog::TYPE_DISK_CACHE_MEM_ENTRY_IMPL,
make_scoped_refptr(new EntryCreationParameters(key, true)));
key_ = key;
Time current = Time::Now();
last_modified_ = current;
last_used_ = current;
Open();
backend_->ModifyStorageSize(0, static_cast<int32>(key.size()));
return true;
}
void MemEntryImpl::InternalDoom() {
net_log_.AddEvent(net::NetLog::TYPE_ENTRY_DOOM, NULL);
doomed_ = true;
if (!ref_count_) {
if (type() == kParentEntry) {
// If this is a parent entry, we need to doom all the child entries.
if (children_.get()) {
EntryMap children;
children.swap(*children_);
for (EntryMap::iterator i = children.begin();
i != children.end(); ++i) {
// Since a pointer to this object is also saved in the map, avoid
// dooming it.
if (i->second != this)
i->second->Doom();
}
DCHECK(children_->empty());
}
} else {
// If this is a child entry, detach it from the parent.
parent_->DetachChild(child_id_);
}
delete this;
}
}
void MemEntryImpl::Open() {
// Only a parent entry can be opened.
// TODO(hclam): make sure it's correct to not apply the concept of ref
// counting to child entry.
DCHECK(type() == kParentEntry);
ref_count_++;
DCHECK_GE(ref_count_, 0);
DCHECK(!doomed_);
}
bool MemEntryImpl::InUse() {
if (type() == kParentEntry) {
return ref_count_ > 0;
} else {
// A child entry is always not in use. The consequence is that a child entry
// can always be evicted while the associated parent entry is currently in
// used (i.e. opened).
return false;
}
}
// ------------------------------------------------------------------------
void MemEntryImpl::Doom() {
if (doomed_)
return;
if (type() == kParentEntry) {
// Perform internal doom from the backend if this is a parent entry.
backend_->InternalDoomEntry(this);
} else {
// Manually detach from the backend and perform internal doom.
backend_->RemoveFromRankingList(this);
InternalDoom();
}
}
void MemEntryImpl::Close() {
// Only a parent entry can be closed.
DCHECK(type() == kParentEntry);
ref_count_--;
DCHECK_GE(ref_count_, 0);
if (!ref_count_ && doomed_)
InternalDoom();
}
std::string MemEntryImpl::GetKey() const {
// A child entry doesn't have key so this method should not be called.
DCHECK(type() == kParentEntry);
return key_;
}
Time MemEntryImpl::GetLastUsed() const {
return last_used_;
}
Time MemEntryImpl::GetLastModified() const {
return last_modified_;
}
int32 MemEntryImpl::GetDataSize(int index) const {
if (index < 0 || index >= NUM_STREAMS)
return 0;
return data_size_[index];
}
int MemEntryImpl::ReadData(int index, int offset, net::IOBuffer* buf,
int buf_len, net::CompletionCallback* completion_callback) {
if (net_log_.IsLoggingAllEvents()) {
net_log_.BeginEvent(
net::NetLog::TYPE_ENTRY_READ_DATA,
make_scoped_refptr(
new ReadWriteDataParameters(index, offset, buf_len, false)));
}
int result = InternalReadData(index, offset, buf, buf_len);
if (net_log_.IsLoggingAllEvents()) {
net_log_.EndEvent(
net::NetLog::TYPE_ENTRY_READ_DATA,
make_scoped_refptr(new ReadWriteCompleteParameters(result)));
}
return result;
}
int MemEntryImpl::WriteData(int index, int offset, net::IOBuffer* buf,
int buf_len, net::CompletionCallback* completion_callback, bool truncate) {
if (net_log_.IsLoggingAllEvents()) {
net_log_.BeginEvent(
net::NetLog::TYPE_ENTRY_WRITE_DATA,
make_scoped_refptr(
new ReadWriteDataParameters(index, offset, buf_len, truncate)));
}
int result = InternalWriteData(index, offset, buf, buf_len, truncate);
if (net_log_.IsLoggingAllEvents()) {
net_log_.EndEvent(
net::NetLog::TYPE_ENTRY_WRITE_DATA,
make_scoped_refptr(new ReadWriteCompleteParameters(result)));
}
return result;
}
int MemEntryImpl::ReadSparseData(int64 offset, net::IOBuffer* buf, int buf_len,
net::CompletionCallback* completion_callback) {
if (net_log_.IsLoggingAllEvents()) {
net_log_.BeginEvent(
net::NetLog::TYPE_SPARSE_READ,
make_scoped_refptr(
new SparseOperationParameters(offset, buf_len)));
}
int result = InternalReadSparseData(offset, buf, buf_len);
if (net_log_.IsLoggingAllEvents())
net_log_.EndEvent(net::NetLog::TYPE_SPARSE_READ, NULL);
return result;
}
int MemEntryImpl::WriteSparseData(int64 offset, net::IOBuffer* buf, int buf_len,
net::CompletionCallback* completion_callback) {
if (net_log_.IsLoggingAllEvents()) {
net_log_.BeginEvent(net::NetLog::TYPE_SPARSE_WRITE,
make_scoped_refptr(
new SparseOperationParameters(offset, buf_len)));
}
int result = InternalWriteSparseData(offset, buf, buf_len);
if (net_log_.IsLoggingAllEvents())
net_log_.EndEvent(net::NetLog::TYPE_SPARSE_WRITE, NULL);
return result;
}
int MemEntryImpl::GetAvailableRange(int64 offset, int len, int64* start,
CompletionCallback* callback) {
if (net_log_.IsLoggingAllEvents()) {
net_log_.BeginEvent(
net::NetLog::TYPE_SPARSE_GET_RANGE,
make_scoped_refptr(
new SparseOperationParameters(offset, len)));
}
int result = GetAvailableRange(offset, len, start);
if (net_log_.IsLoggingAllEvents()) {
net_log_.EndEvent(
net::NetLog::TYPE_SPARSE_GET_RANGE,
make_scoped_refptr(
new GetAvailableRangeResultParameters(*start, result)));
}
return result;
}
bool MemEntryImpl::CouldBeSparse() const {
DCHECK_EQ(kParentEntry, type());
return (children_.get() != NULL);
}
int MemEntryImpl::ReadyForSparseIO(
net::CompletionCallback* completion_callback) {
return net::OK;
}
// ------------------------------------------------------------------------
MemEntryImpl::~MemEntryImpl() {
for (int i = 0; i < NUM_STREAMS; i++)
backend_->ModifyStorageSize(data_size_[i], 0);
backend_->ModifyStorageSize(static_cast<int32>(key_.size()), 0);
net_log_.EndEvent(net::NetLog::TYPE_DISK_CACHE_MEM_ENTRY_IMPL, NULL);
}
int MemEntryImpl::InternalReadData(int index, int offset, net::IOBuffer* buf,
int buf_len) {
DCHECK(type() == kParentEntry || index == kSparseData);
if (index < 0 || index >= NUM_STREAMS)
return net::ERR_INVALID_ARGUMENT;
int entry_size = GetDataSize(index);
if (offset >= entry_size || offset < 0 || !buf_len)
return 0;
if (buf_len < 0)
return net::ERR_INVALID_ARGUMENT;
if (offset + buf_len > entry_size)
buf_len = entry_size - offset;
UpdateRank(false);
memcpy(buf->data(), &(data_[index])[offset], buf_len);
return buf_len;
}
int MemEntryImpl::InternalWriteData(int index, int offset, net::IOBuffer* buf,
int buf_len, bool truncate) {
DCHECK(type() == kParentEntry || index == kSparseData);
if (index < 0 || index >= NUM_STREAMS)
return net::ERR_INVALID_ARGUMENT;
if (offset < 0 || buf_len < 0)
return net::ERR_INVALID_ARGUMENT;
int max_file_size = backend_->MaxFileSize();
// offset of buf_len could be negative numbers.
if (offset > max_file_size || buf_len > max_file_size ||
offset + buf_len > max_file_size) {
return net::ERR_FAILED;
}
// Read the size at this point.
int entry_size = GetDataSize(index);
PrepareTarget(index, offset, buf_len);
if (entry_size < offset + buf_len) {
backend_->ModifyStorageSize(entry_size, offset + buf_len);
data_size_[index] = offset + buf_len;
} else if (truncate) {
if (entry_size > offset + buf_len) {
backend_->ModifyStorageSize(entry_size, offset + buf_len);
data_size_[index] = offset + buf_len;
}
}
UpdateRank(true);
if (!buf_len)
return 0;
memcpy(&(data_[index])[offset], buf->data(), buf_len);
return buf_len;
}
int MemEntryImpl::InternalReadSparseData(int64 offset, net::IOBuffer* buf,
int buf_len) {
DCHECK(type() == kParentEntry);
if (!InitSparseInfo())
return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
if (offset < 0 || buf_len < 0)
return net::ERR_INVALID_ARGUMENT;
// We will keep using this buffer and adjust the offset in this buffer.
scoped_refptr<net::DrainableIOBuffer> io_buf(
new net::DrainableIOBuffer(buf, buf_len));
// Iterate until we have read enough.
while (io_buf->BytesRemaining()) {
MemEntryImpl* child = OpenChild(offset + io_buf->BytesConsumed(), false);
// No child present for that offset.
if (!child)
break;
// We then need to prepare the child offset and len.
int child_offset = ToChildOffset(offset + io_buf->BytesConsumed());
// If we are trying to read from a position that the child entry has no data
// we should stop.
if (child_offset < child->child_first_pos_)
break;
if (net_log_.IsLoggingAllEvents()) {
net_log_.BeginEvent(
net::NetLog::TYPE_SPARSE_READ_CHILD_DATA,
make_scoped_refptr(new SparseReadWriteParameters(
child->net_log().source(),
io_buf->BytesRemaining())));
}
int ret = child->ReadData(kSparseData, child_offset, io_buf,
io_buf->BytesRemaining(), NULL);
if (net_log_.IsLoggingAllEvents()) {
net_log_.EndEventWithNetErrorCode(
net::NetLog::TYPE_SPARSE_READ_CHILD_DATA, ret);
}
// If we encounter an error in one entry, return immediately.
if (ret < 0)
return ret;
else if (ret == 0)
break;
// Increment the counter by number of bytes read in the child entry.
io_buf->DidConsume(ret);
}
UpdateRank(false);
return io_buf->BytesConsumed();
}
int MemEntryImpl::InternalWriteSparseData(int64 offset, net::IOBuffer* buf,
int buf_len) {
DCHECK(type() == kParentEntry);
if (!InitSparseInfo())
return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
if (offset < 0 || buf_len < 0)
return net::ERR_INVALID_ARGUMENT;
scoped_refptr<net::DrainableIOBuffer> io_buf(
new net::DrainableIOBuffer(buf, buf_len));
// This loop walks through child entries continuously starting from |offset|
// and writes blocks of data (of maximum size kMaxSparseEntrySize) into each
// child entry until all |buf_len| bytes are written. The write operation can
// start in the middle of an entry.
while (io_buf->BytesRemaining()) {
MemEntryImpl* child = OpenChild(offset + io_buf->BytesConsumed(), true);
int child_offset = ToChildOffset(offset + io_buf->BytesConsumed());
// Find the right amount to write, this evaluates the remaining bytes to
// write and remaining capacity of this child entry.
int write_len = std::min(static_cast<int>(io_buf->BytesRemaining()),
kMaxSparseEntrySize - child_offset);
// Keep a record of the last byte position (exclusive) in the child.
int data_size = child->GetDataSize(kSparseData);
if (net_log_.IsLoggingAllEvents()) {
net_log_.BeginEvent(
net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA,
make_scoped_refptr(new SparseReadWriteParameters(
child->net_log().source(),
write_len)));
}
// Always writes to the child entry. This operation may overwrite data
// previously written.
// TODO(hclam): if there is data in the entry and this write is not
// continuous we may want to discard this write.
int ret = child->WriteData(kSparseData, child_offset, io_buf, write_len,
NULL, true);
if (net_log_.IsLoggingAllEvents()) {
net_log_.EndEventWithNetErrorCode(
net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA, ret);
}
if (ret < 0)
return ret;
else if (ret == 0)
break;
// Keep a record of the first byte position in the child if the write was
// not aligned nor continuous. This is to enable witting to the middle
// of an entry and still keep track of data off the aligned edge.
if (data_size != child_offset)
child->child_first_pos_ = child_offset;
// Adjust the offset in the IO buffer.
io_buf->DidConsume(ret);
}
UpdateRank(true);
return io_buf->BytesConsumed();
}
int MemEntryImpl::GetAvailableRange(int64 offset, int len, int64* start) {
DCHECK(type() == kParentEntry);
DCHECK(start);
if (!InitSparseInfo())
return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
if (offset < 0 || len < 0 || !start)
return net::ERR_INVALID_ARGUMENT;
MemEntryImpl* current_child = NULL;
// Find the first child and record the number of empty bytes.
int empty = FindNextChild(offset, len, ¤t_child);
if (current_child) {
*start = offset + empty;
len -= empty;
// Counts the number of continuous bytes.
int continuous = 0;
// This loop scan for continuous bytes.
while (len && current_child) {
// Number of bytes available in this child.
int data_size = current_child->GetDataSize(kSparseData) -
ToChildOffset(*start + continuous);
if (data_size > len)
data_size = len;
// We have found more continuous bytes so increment the count. Also
// decrement the length we should scan.
continuous += data_size;
len -= data_size;
// If the next child is discontinuous, break the loop.
if (FindNextChild(*start + continuous, len, ¤t_child))
break;
}
return continuous;
}
*start = offset;
return 0;
}
void MemEntryImpl::PrepareTarget(int index, int offset, int buf_len) {
int entry_size = GetDataSize(index);
if (entry_size >= offset + buf_len)
return; // Not growing the stored data.
if (static_cast<int>(data_[index].size()) < offset + buf_len)
data_[index].resize(offset + buf_len);
if (offset <= entry_size)
return; // There is no "hole" on the stored data.
// Cleanup the hole not written by the user. The point is to avoid returning
// random stuff later on.
memset(&(data_[index])[entry_size], 0, offset - entry_size);
}
void MemEntryImpl::UpdateRank(bool modified) {
Time current = Time::Now();
last_used_ = current;
if (modified)
last_modified_ = current;
if (!doomed_)
backend_->UpdateRank(this);
}
bool MemEntryImpl::InitSparseInfo() {
DCHECK(type() == kParentEntry);
if (!children_.get()) {
// If we already have some data in sparse stream but we are being
// initialized as a sparse entry, we should fail.
if (GetDataSize(kSparseData))
return false;
children_.reset(new EntryMap());
// The parent entry stores data for the first block, so save this object to
// index 0.
(*children_)[0] = this;
}
return true;
}
bool MemEntryImpl::InitChildEntry(MemEntryImpl* parent, int child_id,
net::NetLog* net_log) {
DCHECK(!parent_);
DCHECK(!child_id_);
net_log_ = net::BoundNetLog::Make(net_log,
net::NetLog::SOURCE_MEMORY_CACHE_ENTRY);
net_log_.BeginEvent(
net::NetLog::TYPE_DISK_CACHE_MEM_ENTRY_IMPL,
make_scoped_refptr(new EntryCreationParameters(
GenerateChildName(parent->key(), child_id_),
true)));
parent_ = parent;
child_id_ = child_id;
Time current = Time::Now();
last_modified_ = current;
last_used_ = current;
// Insert this to the backend's ranking list.
backend_->InsertIntoRankingList(this);
return true;
}
MemEntryImpl* MemEntryImpl::OpenChild(int64 offset, bool create) {
DCHECK(type() == kParentEntry);
int index = ToChildIndex(offset);
EntryMap::iterator i = children_->find(index);
if (i != children_->end()) {
return i->second;
} else if (create) {
MemEntryImpl* child = new MemEntryImpl(backend_);
child->InitChildEntry(this, index, net_log_.net_log());
(*children_)[index] = child;
return child;
}
return NULL;
}
int MemEntryImpl::FindNextChild(int64 offset, int len, MemEntryImpl** child) {
DCHECK(child);
*child = NULL;
int scanned_len = 0;
// This loop tries to find the first existing child.
while (scanned_len < len) {
// This points to the current offset in the child.
int current_child_offset = ToChildOffset(offset + scanned_len);
MemEntryImpl* current_child = OpenChild(offset + scanned_len, false);
if (current_child) {
int child_first_pos = current_child->child_first_pos_;
// This points to the first byte that we should be reading from, we need
// to take care of the filled region and the current offset in the child.
int first_pos = std::max(current_child_offset, child_first_pos);
// If the first byte position we should read from doesn't exceed the
// filled region, we have found the first child.
if (first_pos < current_child->GetDataSize(kSparseData)) {
*child = current_child;
// We need to advance the scanned length.
scanned_len += first_pos - current_child_offset;
break;
}
}
scanned_len += kMaxSparseEntrySize - current_child_offset;
}
return scanned_len;
}
void MemEntryImpl::DetachChild(int child_id) {
children_->erase(child_id);
}
} // namespace disk_cache
|