1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/disk_cache/sparse_control.h"
#include "base/bind.h"
#include "base/format_macros.h"
#include "base/logging.h"
#include "base/message_loop.h"
#include "base/string_util.h"
#include "base/stringprintf.h"
#include "base/time.h"
#include "net/base/io_buffer.h"
#include "net/base/net_errors.h"
#include "net/disk_cache/backend_impl.h"
#include "net/disk_cache/entry_impl.h"
#include "net/disk_cache/file.h"
#include "net/disk_cache/net_log_parameters.h"
using base::Time;
namespace {
// Stream of the sparse data index.
const int kSparseIndex = 2;
// Stream of the sparse data.
const int kSparseData = 1;
// We can have up to 64k children.
const int kMaxMapSize = 8 * 1024;
// The maximum number of bytes that a child can store.
const int kMaxEntrySize = 0x100000;
// The size of each data block (tracked by the child allocation bitmap).
const int kBlockSize = 1024;
// Returns the name of a child entry given the base_name and signature of the
// parent and the child_id.
// If the entry is called entry_name, child entries will be named something
// like Range_entry_name:XXX:YYY where XXX is the entry signature and YYY is the
// number of the particular child.
std::string GenerateChildName(const std::string& base_name, int64 signature,
int64 child_id) {
return base::StringPrintf("Range_%s:%" PRIx64 ":%" PRIx64, base_name.c_str(),
signature, child_id);
}
// This class deletes the children of a sparse entry.
class ChildrenDeleter
: public base::RefCounted<ChildrenDeleter>,
public disk_cache::FileIOCallback {
public:
ChildrenDeleter(disk_cache::BackendImpl* backend, const std::string& name)
: backend_(backend->GetWeakPtr()), name_(name), signature_(0) {}
virtual void OnFileIOComplete(int bytes_copied) OVERRIDE;
// Two ways of deleting the children: if we have the children map, use Start()
// directly, otherwise pass the data address to ReadData().
void Start(char* buffer, int len);
void ReadData(disk_cache::Addr address, int len);
private:
friend class base::RefCounted<ChildrenDeleter>;
virtual ~ChildrenDeleter() {}
void DeleteChildren();
base::WeakPtr<disk_cache::BackendImpl> backend_;
std::string name_;
disk_cache::Bitmap children_map_;
int64 signature_;
scoped_array<char> buffer_;
DISALLOW_COPY_AND_ASSIGN(ChildrenDeleter);
};
// This is the callback of the file operation.
void ChildrenDeleter::OnFileIOComplete(int bytes_copied) {
char* buffer = buffer_.release();
Start(buffer, bytes_copied);
}
void ChildrenDeleter::Start(char* buffer, int len) {
buffer_.reset(buffer);
if (len < static_cast<int>(sizeof(disk_cache::SparseData)))
return Release();
// Just copy the information from |buffer|, delete |buffer| and start deleting
// the child entries.
disk_cache::SparseData* data =
reinterpret_cast<disk_cache::SparseData*>(buffer);
signature_ = data->header.signature;
int num_bits = (len - sizeof(disk_cache::SparseHeader)) * 8;
children_map_.Resize(num_bits, false);
children_map_.SetMap(data->bitmap, num_bits / 32);
buffer_.reset();
DeleteChildren();
}
void ChildrenDeleter::ReadData(disk_cache::Addr address, int len) {
DCHECK(address.is_block_file());
if (!backend_)
return Release();
disk_cache::File* file(backend_->File(address));
if (!file)
return Release();
size_t file_offset = address.start_block() * address.BlockSize() +
disk_cache::kBlockHeaderSize;
buffer_.reset(new char[len]);
bool completed;
if (!file->Read(buffer_.get(), len, file_offset, this, &completed))
return Release();
if (completed)
OnFileIOComplete(len);
// And wait until OnFileIOComplete gets called.
}
void ChildrenDeleter::DeleteChildren() {
int child_id = 0;
if (!children_map_.FindNextSetBit(&child_id) || !backend_) {
// We are done. Just delete this object.
return Release();
}
std::string child_name = GenerateChildName(name_, signature_, child_id);
backend_->SyncDoomEntry(child_name);
children_map_.Set(child_id, false);
// Post a task to delete the next child.
MessageLoop::current()->PostTask(FROM_HERE, base::Bind(
&ChildrenDeleter::DeleteChildren, this));
}
// Returns the NetLog event type corresponding to a SparseOperation.
net::NetLog::EventType GetSparseEventType(
disk_cache::SparseControl::SparseOperation operation) {
switch (operation) {
case disk_cache::SparseControl::kReadOperation:
return net::NetLog::TYPE_SPARSE_READ;
case disk_cache::SparseControl::kWriteOperation:
return net::NetLog::TYPE_SPARSE_WRITE;
case disk_cache::SparseControl::kGetRangeOperation:
return net::NetLog::TYPE_SPARSE_GET_RANGE;
default:
NOTREACHED();
return net::NetLog::TYPE_CANCELLED;
}
}
// Logs the end event for |operation| on a child entry. Range operations log
// no events for each child they search through.
void LogChildOperationEnd(const net::BoundNetLog& net_log,
disk_cache::SparseControl::SparseOperation operation,
int result) {
if (net_log.IsLoggingAllEvents()) {
net::NetLog::EventType event_type;
switch (operation) {
case disk_cache::SparseControl::kReadOperation:
event_type = net::NetLog::TYPE_SPARSE_READ_CHILD_DATA;
break;
case disk_cache::SparseControl::kWriteOperation:
event_type = net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA;
break;
case disk_cache::SparseControl::kGetRangeOperation:
return;
default:
NOTREACHED();
return;
}
net_log.EndEventWithNetErrorCode(event_type, result);
}
}
} // namespace.
namespace disk_cache {
SparseControl::SparseControl(EntryImpl* entry)
: entry_(entry),
child_(NULL),
operation_(kNoOperation),
pending_(false),
finished_(false),
init_(false),
range_found_(false),
abort_(false),
child_map_(child_data_.bitmap, kNumSparseBits, kNumSparseBits / 32),
offset_(0),
buf_len_(0),
child_offset_(0),
child_len_(0),
result_(0) {
memset(&sparse_header_, 0, sizeof(sparse_header_));
memset(&child_data_, 0, sizeof(child_data_));
}
SparseControl::~SparseControl() {
if (child_)
CloseChild();
if (init_)
WriteSparseData();
}
int SparseControl::Init() {
DCHECK(!init_);
// We should not have sparse data for the exposed entry.
if (entry_->GetDataSize(kSparseData))
return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
// Now see if there is something where we store our data.
int rv = net::OK;
int data_len = entry_->GetDataSize(kSparseIndex);
if (!data_len) {
rv = CreateSparseEntry();
} else {
rv = OpenSparseEntry(data_len);
}
if (rv == net::OK)
init_ = true;
return rv;
}
bool SparseControl::CouldBeSparse() const {
DCHECK(!init_);
if (entry_->GetDataSize(kSparseData))
return false;
// We don't verify the data, just see if it could be there.
return (entry_->GetDataSize(kSparseIndex) != 0);
}
int SparseControl::StartIO(SparseOperation op, int64 offset, net::IOBuffer* buf,
int buf_len, const CompletionCallback& callback) {
DCHECK(init_);
// We don't support simultaneous IO for sparse data.
if (operation_ != kNoOperation)
return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
if (offset < 0 || buf_len < 0)
return net::ERR_INVALID_ARGUMENT;
// We only support up to 64 GB.
if (offset + buf_len >= 0x1000000000LL || offset + buf_len < 0)
return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
DCHECK(!user_buf_);
DCHECK(user_callback_.is_null());
if (!buf && (op == kReadOperation || op == kWriteOperation))
return 0;
// Copy the operation parameters.
operation_ = op;
offset_ = offset;
user_buf_ = buf ? new net::DrainableIOBuffer(buf, buf_len) : NULL;
buf_len_ = buf_len;
user_callback_ = callback;
result_ = 0;
pending_ = false;
finished_ = false;
abort_ = false;
if (entry_->net_log().IsLoggingAllEvents()) {
entry_->net_log().BeginEvent(
GetSparseEventType(operation_),
CreateNetLogSparseOperationCallback(offset_, buf_len_));
}
DoChildrenIO();
if (!pending_) {
// Everything was done synchronously.
operation_ = kNoOperation;
user_buf_ = NULL;
user_callback_.Reset();
return result_;
}
return net::ERR_IO_PENDING;
}
int SparseControl::GetAvailableRange(int64 offset, int len, int64* start) {
DCHECK(init_);
// We don't support simultaneous IO for sparse data.
if (operation_ != kNoOperation)
return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
DCHECK(start);
range_found_ = false;
int result = StartIO(
kGetRangeOperation, offset, NULL, len, CompletionCallback());
if (range_found_) {
*start = offset_;
return result;
}
// This is a failure. We want to return a valid start value in any case.
*start = offset;
return result < 0 ? result : 0; // Don't mask error codes to the caller.
}
void SparseControl::CancelIO() {
if (operation_ == kNoOperation)
return;
abort_ = true;
}
int SparseControl::ReadyToUse(const CompletionCallback& callback) {
if (!abort_)
return net::OK;
// We'll grab another reference to keep this object alive because we just have
// one extra reference due to the pending IO operation itself, but we'll
// release that one before invoking user_callback_.
entry_->AddRef(); // Balanced in DoAbortCallbacks.
abort_callbacks_.push_back(callback);
return net::ERR_IO_PENDING;
}
// Static
void SparseControl::DeleteChildren(EntryImpl* entry) {
DCHECK(entry->GetEntryFlags() & PARENT_ENTRY);
int data_len = entry->GetDataSize(kSparseIndex);
if (data_len < static_cast<int>(sizeof(SparseData)) ||
entry->GetDataSize(kSparseData))
return;
int map_len = data_len - sizeof(SparseHeader);
if (map_len > kMaxMapSize || map_len % 4)
return;
char* buffer;
Addr address;
entry->GetData(kSparseIndex, &buffer, &address);
if (!buffer && !address.is_initialized())
return;
entry->net_log().AddEvent(net::NetLog::TYPE_SPARSE_DELETE_CHILDREN);
DCHECK(entry->backend_);
ChildrenDeleter* deleter = new ChildrenDeleter(entry->backend_,
entry->GetKey());
// The object will self destruct when finished.
deleter->AddRef();
if (buffer) {
MessageLoop::current()->PostTask(FROM_HERE, base::Bind(
&ChildrenDeleter::Start, deleter, buffer, data_len));
} else {
MessageLoop::current()->PostTask(FROM_HERE, base::Bind(
&ChildrenDeleter::ReadData, deleter, address, data_len));
}
}
// We are going to start using this entry to store sparse data, so we have to
// initialize our control info.
int SparseControl::CreateSparseEntry() {
if (CHILD_ENTRY & entry_->GetEntryFlags())
return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
memset(&sparse_header_, 0, sizeof(sparse_header_));
sparse_header_.signature = Time::Now().ToInternalValue();
sparse_header_.magic = kIndexMagic;
sparse_header_.parent_key_len = entry_->GetKey().size();
children_map_.Resize(kNumSparseBits, true);
// Save the header. The bitmap is saved in the destructor.
scoped_refptr<net::IOBuffer> buf(
new net::WrappedIOBuffer(reinterpret_cast<char*>(&sparse_header_)));
int rv = entry_->WriteData(
kSparseIndex, 0, buf, sizeof(sparse_header_), CompletionCallback(),
false);
if (rv != sizeof(sparse_header_)) {
DLOG(ERROR) << "Unable to save sparse_header_";
return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
}
entry_->SetEntryFlags(PARENT_ENTRY);
return net::OK;
}
// We are opening an entry from disk. Make sure that our control data is there.
int SparseControl::OpenSparseEntry(int data_len) {
if (data_len < static_cast<int>(sizeof(SparseData)))
return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
if (entry_->GetDataSize(kSparseData))
return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
if (!(PARENT_ENTRY & entry_->GetEntryFlags()))
return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
// Dont't go over board with the bitmap. 8 KB gives us offsets up to 64 GB.
int map_len = data_len - sizeof(sparse_header_);
if (map_len > kMaxMapSize || map_len % 4)
return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
scoped_refptr<net::IOBuffer> buf(
new net::WrappedIOBuffer(reinterpret_cast<char*>(&sparse_header_)));
// Read header.
int rv = entry_->ReadData(
kSparseIndex, 0, buf, sizeof(sparse_header_), CompletionCallback());
if (rv != static_cast<int>(sizeof(sparse_header_)))
return net::ERR_CACHE_READ_FAILURE;
// The real validation should be performed by the caller. This is just to
// double check.
if (sparse_header_.magic != kIndexMagic ||
sparse_header_.parent_key_len !=
static_cast<int>(entry_->GetKey().size()))
return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
// Read the actual bitmap.
buf = new net::IOBuffer(map_len);
rv = entry_->ReadData(kSparseIndex, sizeof(sparse_header_), buf, map_len,
CompletionCallback());
if (rv != map_len)
return net::ERR_CACHE_READ_FAILURE;
// Grow the bitmap to the current size and copy the bits.
children_map_.Resize(map_len * 8, false);
children_map_.SetMap(reinterpret_cast<uint32*>(buf->data()), map_len);
return net::OK;
}
bool SparseControl::OpenChild() {
DCHECK_GE(result_, 0);
std::string key = GenerateChildKey();
if (child_) {
// Keep using the same child or open another one?.
if (key == child_->GetKey())
return true;
CloseChild();
}
// See if we are tracking this child.
if (!ChildPresent())
return ContinueWithoutChild(key);
if (!entry_->backend_)
return false;
child_ = entry_->backend_->OpenEntryImpl(key);
if (!child_)
return ContinueWithoutChild(key);
EntryImpl* child = static_cast<EntryImpl*>(child_);
if (!(CHILD_ENTRY & child->GetEntryFlags()) ||
child->GetDataSize(kSparseIndex) <
static_cast<int>(sizeof(child_data_)))
return KillChildAndContinue(key, false);
scoped_refptr<net::WrappedIOBuffer> buf(
new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_)));
// Read signature.
int rv = child_->ReadData(kSparseIndex, 0, buf, sizeof(child_data_),
CompletionCallback());
if (rv != sizeof(child_data_))
return KillChildAndContinue(key, true); // This is a fatal failure.
if (child_data_.header.signature != sparse_header_.signature ||
child_data_.header.magic != kIndexMagic)
return KillChildAndContinue(key, false);
if (child_data_.header.last_block_len < 0 ||
child_data_.header.last_block_len > kBlockSize) {
// Make sure these values are always within range.
child_data_.header.last_block_len = 0;
child_data_.header.last_block = -1;
}
return true;
}
void SparseControl::CloseChild() {
scoped_refptr<net::WrappedIOBuffer> buf(
new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_)));
// Save the allocation bitmap before closing the child entry.
int rv = child_->WriteData(kSparseIndex, 0, buf, sizeof(child_data_),
CompletionCallback(),
false);
if (rv != sizeof(child_data_))
DLOG(ERROR) << "Failed to save child data";
child_->Release();
child_ = NULL;
}
std::string SparseControl::GenerateChildKey() {
return GenerateChildName(entry_->GetKey(), sparse_header_.signature,
offset_ >> 20);
}
// We are deleting the child because something went wrong.
bool SparseControl::KillChildAndContinue(const std::string& key, bool fatal) {
SetChildBit(false);
child_->DoomImpl();
child_->Release();
child_ = NULL;
if (fatal) {
result_ = net::ERR_CACHE_READ_FAILURE;
return false;
}
return ContinueWithoutChild(key);
}
// We were not able to open this child; see what we can do.
bool SparseControl::ContinueWithoutChild(const std::string& key) {
if (kReadOperation == operation_)
return false;
if (kGetRangeOperation == operation_)
return true;
if (!entry_->backend_)
return false;
child_ = entry_->backend_->CreateEntryImpl(key);
if (!child_) {
child_ = NULL;
result_ = net::ERR_CACHE_READ_FAILURE;
return false;
}
// Write signature.
InitChildData();
return true;
}
bool SparseControl::ChildPresent() {
int child_bit = static_cast<int>(offset_ >> 20);
if (children_map_.Size() <= child_bit)
return false;
return children_map_.Get(child_bit);
}
void SparseControl::SetChildBit(bool value) {
int child_bit = static_cast<int>(offset_ >> 20);
// We may have to increase the bitmap of child entries.
if (children_map_.Size() <= child_bit)
children_map_.Resize(Bitmap::RequiredArraySize(child_bit + 1) * 32, true);
children_map_.Set(child_bit, value);
}
void SparseControl::WriteSparseData() {
scoped_refptr<net::IOBuffer> buf(new net::WrappedIOBuffer(
reinterpret_cast<const char*>(children_map_.GetMap())));
int len = children_map_.ArraySize() * 4;
int rv = entry_->WriteData(kSparseIndex, sizeof(sparse_header_), buf, len,
CompletionCallback(), false);
if (rv != len) {
DLOG(ERROR) << "Unable to save sparse map";
}
}
bool SparseControl::VerifyRange() {
DCHECK_GE(result_, 0);
child_offset_ = static_cast<int>(offset_) & (kMaxEntrySize - 1);
child_len_ = std::min(buf_len_, kMaxEntrySize - child_offset_);
// We can write to (or get info from) anywhere in this child.
if (operation_ != kReadOperation)
return true;
// Check that there are no holes in this range.
int last_bit = (child_offset_ + child_len_ + 1023) >> 10;
int start = child_offset_ >> 10;
if (child_map_.FindNextBit(&start, last_bit, false)) {
// Something is not here.
DCHECK_GE(child_data_.header.last_block_len, 0);
DCHECK_LT(child_data_.header.last_block_len, kMaxEntrySize);
int partial_block_len = PartialBlockLength(start);
if (start == child_offset_ >> 10) {
// It looks like we don't have anything.
if (partial_block_len <= (child_offset_ & (kBlockSize - 1)))
return false;
}
// We have the first part.
child_len_ = (start << 10) - child_offset_;
if (partial_block_len) {
// We may have a few extra bytes.
child_len_ = std::min(child_len_ + partial_block_len, buf_len_);
}
// There is no need to read more after this one.
buf_len_ = child_len_;
}
return true;
}
void SparseControl::UpdateRange(int result) {
if (result <= 0 || operation_ != kWriteOperation)
return;
DCHECK_GE(child_data_.header.last_block_len, 0);
DCHECK_LT(child_data_.header.last_block_len, kMaxEntrySize);
// Write the bitmap.
int first_bit = child_offset_ >> 10;
int block_offset = child_offset_ & (kBlockSize - 1);
if (block_offset && (child_data_.header.last_block != first_bit ||
child_data_.header.last_block_len < block_offset)) {
// The first block is not completely filled; ignore it.
first_bit++;
}
int last_bit = (child_offset_ + result) >> 10;
block_offset = (child_offset_ + result) & (kBlockSize - 1);
// This condition will hit with the following criteria:
// 1. The first byte doesn't follow the last write.
// 2. The first byte is in the middle of a block.
// 3. The first byte and the last byte are in the same block.
if (first_bit > last_bit)
return;
if (block_offset && !child_map_.Get(last_bit)) {
// The last block is not completely filled; save it for later.
child_data_.header.last_block = last_bit;
child_data_.header.last_block_len = block_offset;
} else {
child_data_.header.last_block = -1;
}
child_map_.SetRange(first_bit, last_bit, true);
}
int SparseControl::PartialBlockLength(int block_index) const {
if (block_index == child_data_.header.last_block)
return child_data_.header.last_block_len;
// This may be the last stored index.
int entry_len = child_->GetDataSize(kSparseData);
if (block_index == entry_len >> 10)
return entry_len & (kBlockSize - 1);
// This is really empty.
return 0;
}
void SparseControl::InitChildData() {
// We know the real type of child_.
EntryImpl* child = static_cast<EntryImpl*>(child_);
child->SetEntryFlags(CHILD_ENTRY);
memset(&child_data_, 0, sizeof(child_data_));
child_data_.header = sparse_header_;
scoped_refptr<net::WrappedIOBuffer> buf(
new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_)));
int rv = child_->WriteData(kSparseIndex, 0, buf, sizeof(child_data_),
CompletionCallback(), false);
if (rv != sizeof(child_data_))
DLOG(ERROR) << "Failed to save child data";
SetChildBit(true);
}
void SparseControl::DoChildrenIO() {
while (DoChildIO()) continue;
// Range operations are finished synchronously, often without setting
// |finished_| to true.
if (kGetRangeOperation == operation_ &&
entry_->net_log().IsLoggingAllEvents()) {
entry_->net_log().EndEvent(
net::NetLog::TYPE_SPARSE_GET_RANGE,
CreateNetLogGetAvailableRangeResultCallback(offset_, result_));
}
if (finished_) {
if (kGetRangeOperation != operation_ &&
entry_->net_log().IsLoggingAllEvents()) {
entry_->net_log().EndEvent(GetSparseEventType(operation_));
}
if (pending_)
DoUserCallback(); // Don't touch this object after this point.
}
}
bool SparseControl::DoChildIO() {
finished_ = true;
if (!buf_len_ || result_ < 0)
return false;
if (!OpenChild())
return false;
if (!VerifyRange())
return false;
// We have more work to do. Let's not trigger a callback to the caller.
finished_ = false;
CompletionCallback callback;
if (!user_callback_.is_null()) {
callback =
base::Bind(&SparseControl::OnChildIOCompleted, base::Unretained(this));
}
int rv = 0;
switch (operation_) {
case kReadOperation:
if (entry_->net_log().IsLoggingAllEvents()) {
entry_->net_log().BeginEvent(
net::NetLog::TYPE_SPARSE_READ_CHILD_DATA,
CreateNetLogSparseReadWriteCallback(child_->net_log().source(),
child_len_));
}
rv = child_->ReadDataImpl(kSparseData, child_offset_, user_buf_,
child_len_, callback);
break;
case kWriteOperation:
if (entry_->net_log().IsLoggingAllEvents()) {
entry_->net_log().BeginEvent(
net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA,
CreateNetLogSparseReadWriteCallback(child_->net_log().source(),
child_len_));
}
rv = child_->WriteDataImpl(kSparseData, child_offset_, user_buf_,
child_len_, callback, false);
break;
case kGetRangeOperation:
rv = DoGetAvailableRange();
break;
default:
NOTREACHED();
}
if (rv == net::ERR_IO_PENDING) {
if (!pending_) {
pending_ = true;
// The child will protect himself against closing the entry while IO is in
// progress. However, this entry can still be closed, and that would not
// be a good thing for us, so we increase the refcount until we're
// finished doing sparse stuff.
entry_->AddRef(); // Balanced in DoUserCallback.
}
return false;
}
if (!rv)
return false;
DoChildIOCompleted(rv);
return true;
}
int SparseControl::DoGetAvailableRange() {
if (!child_)
return child_len_; // Move on to the next child.
// Check that there are no holes in this range.
int last_bit = (child_offset_ + child_len_ + 1023) >> 10;
int start = child_offset_ >> 10;
int partial_start_bytes = PartialBlockLength(start);
int found = start;
int bits_found = child_map_.FindBits(&found, last_bit, true);
// We don't care if there is a partial block in the middle of the range.
int block_offset = child_offset_ & (kBlockSize - 1);
if (!bits_found && partial_start_bytes <= block_offset)
return child_len_;
// We are done. Just break the loop and reset result_ to our real result.
range_found_ = true;
// found now points to the first 1. Lets see if we have zeros before it.
int empty_start = std::max((found << 10) - child_offset_, 0);
int bytes_found = bits_found << 10;
bytes_found += PartialBlockLength(found + bits_found);
if (start == found)
bytes_found -= block_offset;
// If the user is searching past the end of this child, bits_found is the
// right result; otherwise, we have some empty space at the start of this
// query that we have to subtract from the range that we searched.
result_ = std::min(bytes_found, child_len_ - empty_start);
if (!bits_found) {
result_ = std::min(partial_start_bytes - block_offset, child_len_);
empty_start = 0;
}
// Only update offset_ when this query found zeros at the start.
if (empty_start)
offset_ += empty_start;
// This will actually break the loop.
buf_len_ = 0;
return 0;
}
void SparseControl::DoChildIOCompleted(int result) {
LogChildOperationEnd(entry_->net_log(), operation_, result);
if (result < 0) {
// We fail the whole operation if we encounter an error.
result_ = result;
return;
}
UpdateRange(result);
result_ += result;
offset_ += result;
buf_len_ -= result;
// We'll be reusing the user provided buffer for the next chunk.
if (buf_len_ && user_buf_)
user_buf_->DidConsume(result);
}
void SparseControl::OnChildIOCompleted(int result) {
DCHECK_NE(net::ERR_IO_PENDING, result);
DoChildIOCompleted(result);
if (abort_) {
// We'll return the current result of the operation, which may be less than
// the bytes to read or write, but the user cancelled the operation.
abort_ = false;
if (entry_->net_log().IsLoggingAllEvents()) {
entry_->net_log().AddEvent(net::NetLog::TYPE_CANCELLED);
entry_->net_log().EndEvent(GetSparseEventType(operation_));
}
// We have an indirect reference to this object for every callback so if
// there is only one callback, we may delete this object before reaching
// DoAbortCallbacks.
bool has_abort_callbacks = !abort_callbacks_.empty();
DoUserCallback();
if (has_abort_callbacks)
DoAbortCallbacks();
return;
}
// We are running a callback from the message loop. It's time to restart what
// we were doing before.
DoChildrenIO();
}
void SparseControl::DoUserCallback() {
DCHECK(!user_callback_.is_null());
CompletionCallback cb = user_callback_;
user_callback_.Reset();
user_buf_ = NULL;
pending_ = false;
operation_ = kNoOperation;
int rv = result_;
entry_->Release(); // Don't touch object after this line.
cb.Run(rv);
}
void SparseControl::DoAbortCallbacks() {
for (size_t i = 0; i < abort_callbacks_.size(); i++) {
// Releasing all references to entry_ may result in the destruction of this
// object so we should not be touching it after the last Release().
CompletionCallback cb = abort_callbacks_[i];
if (i == abort_callbacks_.size() - 1)
abort_callbacks_.clear();
entry_->Release(); // Don't touch object after this line.
cb.Run(net::OK);
}
}
} // namespace disk_cache
|