1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
|
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/http/http_stream_parser.h"
#include "base/compiler_specific.h"
#include "base/metrics/histogram.h"
#include "base/stringprintf.h"
#include "base/string_util.h"
#include "net/base/address_list.h"
#include "net/base/auth.h"
#include "net/base/io_buffer.h"
#include "net/base/ssl_cert_request_info.h"
#include "net/http/http_net_log_params.h"
#include "net/http/http_request_headers.h"
#include "net/http/http_request_info.h"
#include "net/http/http_response_headers.h"
#include "net/http/http_util.h"
#include "net/socket/ssl_client_socket.h"
#include "net/socket/client_socket_handle.h"
namespace {
std::string GetResponseHeaderLines(const net::HttpResponseHeaders& headers) {
std::string raw_headers = headers.raw_headers();
const char* null_separated_headers = raw_headers.c_str();
const char* header_line = null_separated_headers;
std::string cr_separated_headers;
while (header_line[0] != 0) {
cr_separated_headers += header_line;
cr_separated_headers += "\n";
header_line += strlen(header_line) + 1;
}
return cr_separated_headers;
}
} // namespace
namespace net {
HttpStreamParser::HttpStreamParser(ClientSocketHandle* connection,
const HttpRequestInfo* request,
GrowableIOBuffer* read_buffer,
const BoundNetLog& net_log)
: io_state_(STATE_NONE),
request_(request),
request_headers_(NULL),
request_body_(NULL),
read_buf_(read_buffer),
read_buf_unused_offset_(0),
response_header_start_offset_(-1),
response_body_length_(-1),
response_body_read_(0),
chunked_decoder_(NULL),
user_read_buf_(NULL),
user_read_buf_len_(0),
user_callback_(NULL),
connection_(connection),
net_log_(net_log),
ALLOW_THIS_IN_INITIALIZER_LIST(
io_callback_(this, &HttpStreamParser::OnIOComplete)),
chunk_length_(0),
chunk_length_without_encoding_(0),
sent_last_chunk_(false) {
DCHECK_EQ(0, read_buffer->offset());
}
HttpStreamParser::~HttpStreamParser() {
if (request_body_ != NULL && request_body_->is_chunked())
request_body_->set_chunk_callback(NULL);
}
int HttpStreamParser::SendRequest(const std::string& request_line,
const HttpRequestHeaders& headers,
UploadDataStream* request_body,
HttpResponseInfo* response,
OldCompletionCallback* callback) {
DCHECK_EQ(STATE_NONE, io_state_);
DCHECK(!user_callback_);
DCHECK(callback);
DCHECK(response);
if (net_log_.IsLoggingAllEvents()) {
net_log_.AddEvent(
NetLog::TYPE_HTTP_TRANSACTION_SEND_REQUEST_HEADERS,
make_scoped_refptr(new NetLogHttpRequestParameter(
request_line, headers)));
}
DVLOG(1) << __FUNCTION__ << "()"
<< " request_line = \"" << request_line << "\""
<< " headers = \"" << headers.ToString() << "\"";
response_ = response;
// Put the peer's IP address and port into the response.
AddressList address;
int result = connection_->socket()->GetPeerAddress(&address);
if (result != OK)
return result;
response_->socket_address = HostPortPair::FromAddrInfo(address.head());
std::string request = request_line + headers.ToString();
scoped_refptr<StringIOBuffer> headers_io_buf(new StringIOBuffer(request));
request_headers_ = new DrainableIOBuffer(headers_io_buf,
headers_io_buf->size());
request_body_.reset(request_body);
if (request_body_ != NULL && request_body_->is_chunked()) {
request_body_->set_chunk_callback(this);
const int kChunkHeaderFooterSize = 12; // 2 CRLFs + max of 8 hex chars.
chunk_buf_ = new IOBuffer(request_body_->GetMaxBufferSize() +
kChunkHeaderFooterSize);
}
io_state_ = STATE_SENDING_HEADERS;
result = DoLoop(OK);
if (result == ERR_IO_PENDING)
user_callback_ = callback;
return result > 0 ? OK : result;
}
int HttpStreamParser::ReadResponseHeaders(OldCompletionCallback* callback) {
DCHECK(io_state_ == STATE_REQUEST_SENT || io_state_ == STATE_DONE);
DCHECK(!user_callback_);
DCHECK(callback);
// This function can be called with io_state_ == STATE_DONE if the
// connection is closed after seeing just a 1xx response code.
if (io_state_ == STATE_DONE)
return ERR_CONNECTION_CLOSED;
int result = OK;
io_state_ = STATE_READ_HEADERS;
if (read_buf_->offset() > 0) {
// Simulate the state where the data was just read from the socket.
result = read_buf_->offset() - read_buf_unused_offset_;
read_buf_->set_offset(read_buf_unused_offset_);
}
if (result > 0)
io_state_ = STATE_READ_HEADERS_COMPLETE;
result = DoLoop(result);
if (result == ERR_IO_PENDING)
user_callback_ = callback;
return result > 0 ? OK : result;
}
void HttpStreamParser::Close(bool not_reusable) {
if (not_reusable && connection_->socket())
connection_->socket()->Disconnect();
connection_->Reset();
}
int HttpStreamParser::ReadResponseBody(IOBuffer* buf, int buf_len,
OldCompletionCallback* callback) {
DCHECK(io_state_ == STATE_BODY_PENDING || io_state_ == STATE_DONE);
DCHECK(!user_callback_);
DCHECK(callback);
DCHECK_LE(buf_len, kMaxBufSize);
if (io_state_ == STATE_DONE)
return OK;
user_read_buf_ = buf;
user_read_buf_len_ = buf_len;
io_state_ = STATE_READ_BODY;
int result = DoLoop(OK);
if (result == ERR_IO_PENDING)
user_callback_ = callback;
return result;
}
void HttpStreamParser::OnIOComplete(int result) {
result = DoLoop(result);
// The client callback can do anything, including destroying this class,
// so any pending callback must be issued after everything else is done.
if (result != ERR_IO_PENDING && user_callback_) {
OldCompletionCallback* c = user_callback_;
user_callback_ = NULL;
c->Run(result);
}
}
void HttpStreamParser::OnChunkAvailable() {
// This method may get called while sending the headers or body, so check
// before processing the new data. If we were still initializing or sending
// headers, we will automatically start reading the chunks once we get into
// STATE_SENDING_BODY so nothing to do here.
DCHECK(io_state_ == STATE_SENDING_HEADERS || io_state_ == STATE_SENDING_BODY);
if (io_state_ == STATE_SENDING_BODY)
OnIOComplete(0);
}
int HttpStreamParser::DoLoop(int result) {
bool can_do_more = true;
do {
switch (io_state_) {
case STATE_SENDING_HEADERS:
if (result < 0)
can_do_more = false;
else
result = DoSendHeaders(result);
break;
case STATE_SENDING_BODY:
if (result < 0)
can_do_more = false;
else
result = DoSendBody(result);
break;
case STATE_REQUEST_SENT:
DCHECK(result != ERR_IO_PENDING);
can_do_more = false;
break;
case STATE_READ_HEADERS:
net_log_.BeginEvent(NetLog::TYPE_HTTP_STREAM_PARSER_READ_HEADERS, NULL);
result = DoReadHeaders();
break;
case STATE_READ_HEADERS_COMPLETE:
result = DoReadHeadersComplete(result);
net_log_.EndEventWithNetErrorCode(
NetLog::TYPE_HTTP_STREAM_PARSER_READ_HEADERS, result);
break;
case STATE_BODY_PENDING:
DCHECK(result != ERR_IO_PENDING);
can_do_more = false;
break;
case STATE_READ_BODY:
result = DoReadBody();
// DoReadBodyComplete handles error conditions.
break;
case STATE_READ_BODY_COMPLETE:
result = DoReadBodyComplete(result);
break;
case STATE_DONE:
DCHECK(result != ERR_IO_PENDING);
can_do_more = false;
break;
default:
NOTREACHED();
can_do_more = false;
break;
}
} while (result != ERR_IO_PENDING && can_do_more);
return result;
}
int HttpStreamParser::DoSendHeaders(int result) {
request_headers_->DidConsume(result);
int bytes_remaining = request_headers_->BytesRemaining();
if (bytes_remaining > 0) {
// Record our best estimate of the 'request time' as the time when we send
// out the first bytes of the request headers.
if (bytes_remaining == request_headers_->size()) {
response_->request_time = base::Time::Now();
// We'll record the count of uncoalesced packets IFF coalescing will help,
// and otherwise we'll use an enum to tell why it won't help.
enum COALESCE_POTENTIAL {
// Coalescing won't reduce packet count.
NO_ADVANTAGE = 0,
// There is only a header packet or we have a request body but the
// request body isn't available yet (can't coalesce).
HEADER_ONLY = 1,
// Various cases of coalasced savings.
COALESCE_POTENTIAL_MAX = 30
};
size_t coalesce = HEADER_ONLY;
if (request_body_ != NULL && !request_body_->is_chunked()) {
const size_t kBytesPerPacket = 1430;
uint64 body_packets = (request_body_->size() + kBytesPerPacket - 1) /
kBytesPerPacket;
uint64 header_packets = (bytes_remaining + kBytesPerPacket - 1) /
kBytesPerPacket;
uint64 coalesced_packets = (request_body_->size() + bytes_remaining +
kBytesPerPacket - 1) / kBytesPerPacket;
if (coalesced_packets < header_packets + body_packets) {
if (coalesced_packets > COALESCE_POTENTIAL_MAX)
coalesce = COALESCE_POTENTIAL_MAX;
else
coalesce = static_cast<size_t>(header_packets + body_packets);
} else {
coalesce = NO_ADVANTAGE;
}
}
UMA_HISTOGRAM_ENUMERATION("Net.CoalescePotential", coalesce,
COALESCE_POTENTIAL_MAX);
}
result = connection_->socket()->Write(request_headers_,
bytes_remaining,
&io_callback_);
} else if (request_body_ != NULL &&
(request_body_->is_chunked() || request_body_->size())) {
io_state_ = STATE_SENDING_BODY;
result = OK;
} else {
io_state_ = STATE_REQUEST_SENT;
}
return result;
}
int HttpStreamParser::DoSendBody(int result) {
if (request_body_->is_chunked()) {
chunk_length_ -= result;
if (chunk_length_) {
memmove(chunk_buf_->data(), chunk_buf_->data() + result, chunk_length_);
return connection_->socket()->Write(chunk_buf_, chunk_length_,
&io_callback_);
}
if (sent_last_chunk_) {
io_state_ = STATE_REQUEST_SENT;
return OK;
}
request_body_->MarkConsumedAndFillBuffer(chunk_length_without_encoding_);
chunk_length_without_encoding_ = 0;
chunk_length_ = 0;
int buf_len = static_cast<int>(request_body_->buf_len());
if (request_body_->eof()) {
static const char kLastChunk[] = "0\r\n\r\n";
chunk_length_ = strlen(kLastChunk);
memcpy(chunk_buf_->data(), kLastChunk, chunk_length_);
sent_last_chunk_ = true;
} else if (buf_len) {
// Encode and send the buffer as 1 chunk.
std::string chunk_header = StringPrintf("%X\r\n", buf_len);
char* chunk_ptr = chunk_buf_->data();
memcpy(chunk_ptr, chunk_header.data(), chunk_header.length());
chunk_ptr += chunk_header.length();
memcpy(chunk_ptr, request_body_->buf()->data(), buf_len);
chunk_ptr += buf_len;
memcpy(chunk_ptr, "\r\n", 2);
chunk_length_without_encoding_ = buf_len;
chunk_length_ = chunk_header.length() + buf_len + 2;
}
if (!chunk_length_) // More POST data is yet to come?
return ERR_IO_PENDING;
return connection_->socket()->Write(chunk_buf_, chunk_length_,
&io_callback_);
}
// Non-chunked request body.
request_body_->MarkConsumedAndFillBuffer(result);
if (!request_body_->eof()) {
int buf_len = static_cast<int>(request_body_->buf_len());
result = connection_->socket()->Write(request_body_->buf(), buf_len,
&io_callback_);
} else {
io_state_ = STATE_REQUEST_SENT;
}
return result;
}
int HttpStreamParser::DoReadHeaders() {
io_state_ = STATE_READ_HEADERS_COMPLETE;
// Grow the read buffer if necessary.
if (read_buf_->RemainingCapacity() == 0)
read_buf_->SetCapacity(read_buf_->capacity() + kHeaderBufInitialSize);
// http://crbug.com/16371: We're seeing |user_buf_->data()| return NULL.
// See if the user is passing in an IOBuffer with a NULL |data_|.
CHECK(read_buf_->data());
return connection_->socket()->Read(read_buf_,
read_buf_->RemainingCapacity(),
&io_callback_);
}
int HttpStreamParser::DoReadHeadersComplete(int result) {
if (result == 0)
result = ERR_CONNECTION_CLOSED;
if (result < 0 && result != ERR_CONNECTION_CLOSED) {
io_state_ = STATE_DONE;
return result;
}
// If we've used the connection before, then we know it is not a HTTP/0.9
// response and return ERR_CONNECTION_CLOSED.
if (result == ERR_CONNECTION_CLOSED && read_buf_->offset() == 0 &&
connection_->is_reused()) {
io_state_ = STATE_DONE;
return result;
}
// Record our best estimate of the 'response time' as the time when we read
// the first bytes of the response headers.
if (read_buf_->offset() == 0 && result != ERR_CONNECTION_CLOSED)
response_->response_time = base::Time::Now();
if (result == ERR_CONNECTION_CLOSED) {
// The connection closed before we detected the end of the headers.
// parse things as well as we can and let the caller decide what to do.
if (read_buf_->offset() == 0) {
// The connection was closed before any data was sent. Likely an error
// rather than empty HTTP/0.9 response.
io_state_ = STATE_DONE;
return ERR_EMPTY_RESPONSE;
} else {
int end_offset;
if (response_header_start_offset_ >= 0) {
io_state_ = STATE_READ_BODY_COMPLETE;
end_offset = read_buf_->offset();
} else {
io_state_ = STATE_BODY_PENDING;
end_offset = 0;
}
int rv = DoParseResponseHeaders(end_offset);
if (rv < 0)
return rv;
return result;
}
}
read_buf_->set_offset(read_buf_->offset() + result);
DCHECK_LE(read_buf_->offset(), read_buf_->capacity());
DCHECK_GE(result, 0);
int end_of_header_offset = ParseResponseHeaders();
// Note: -1 is special, it indicates we haven't found the end of headers.
// Anything less than -1 is a net::Error, so we bail out.
if (end_of_header_offset < -1)
return end_of_header_offset;
if (end_of_header_offset == -1) {
io_state_ = STATE_READ_HEADERS;
// Prevent growing the headers buffer indefinitely.
if (read_buf_->offset() - read_buf_unused_offset_ >= kMaxHeaderBufSize) {
io_state_ = STATE_DONE;
return ERR_RESPONSE_HEADERS_TOO_BIG;
}
} else {
// Note where the headers stop.
read_buf_unused_offset_ = end_of_header_offset;
if (response_->headers->response_code() / 100 == 1) {
// After processing a 1xx response, the caller will ask for the next
// header, so reset state to support that. We don't just skip these
// completely because 1xx codes aren't acceptable when establishing a
// tunnel.
io_state_ = STATE_REQUEST_SENT;
response_header_start_offset_ = -1;
} else {
io_state_ = STATE_BODY_PENDING;
CalculateResponseBodySize();
// If the body is 0, the caller may not call ReadResponseBody, which
// is where any extra data is copied to read_buf_, so we move the
// data here and transition to DONE.
if (response_body_length_ == 0) {
io_state_ = STATE_DONE;
int extra_bytes = read_buf_->offset() - read_buf_unused_offset_;
if (extra_bytes) {
CHECK_GT(extra_bytes, 0);
memmove(read_buf_->StartOfBuffer(),
read_buf_->StartOfBuffer() + read_buf_unused_offset_,
extra_bytes);
}
read_buf_->SetCapacity(extra_bytes);
read_buf_unused_offset_ = 0;
return OK;
}
}
}
return result;
}
int HttpStreamParser::DoReadBody() {
io_state_ = STATE_READ_BODY_COMPLETE;
// There may be some data left over from reading the response headers.
if (read_buf_->offset()) {
int available = read_buf_->offset() - read_buf_unused_offset_;
if (available) {
CHECK_GT(available, 0);
int bytes_from_buffer = std::min(available, user_read_buf_len_);
memcpy(user_read_buf_->data(),
read_buf_->StartOfBuffer() + read_buf_unused_offset_,
bytes_from_buffer);
read_buf_unused_offset_ += bytes_from_buffer;
if (bytes_from_buffer == available) {
read_buf_->SetCapacity(0);
read_buf_unused_offset_ = 0;
}
return bytes_from_buffer;
} else {
read_buf_->SetCapacity(0);
read_buf_unused_offset_ = 0;
}
}
// Check to see if we're done reading.
if (IsResponseBodyComplete())
return 0;
DCHECK_EQ(0, read_buf_->offset());
return connection_->socket()->Read(user_read_buf_, user_read_buf_len_,
&io_callback_);
}
int HttpStreamParser::DoReadBodyComplete(int result) {
// If we didn't get a content-length and aren't using a chunked encoding,
// the only way to signal the end of a stream is to close the connection,
// so we don't treat that as an error, though in some cases we may not
// have completely received the resource.
if (result == 0 && !IsResponseBodyComplete() && CanFindEndOfResponse())
result = ERR_CONNECTION_CLOSED;
// Filter incoming data if appropriate. FilterBuf may return an error.
if (result > 0 && chunked_decoder_.get()) {
result = chunked_decoder_->FilterBuf(user_read_buf_->data(), result);
if (result == 0 && !chunked_decoder_->reached_eof()) {
// Don't signal completion of the Read call yet or else it'll look like
// we received end-of-file. Wait for more data.
io_state_ = STATE_READ_BODY;
return OK;
}
}
if (result > 0)
response_body_read_ += result;
if (result <= 0 || IsResponseBodyComplete()) {
io_state_ = STATE_DONE;
// Save the overflow data, which can be in two places. There may be
// some left over in |user_read_buf_|, plus there may be more
// in |read_buf_|. But the part left over in |user_read_buf_| must have
// come from the |read_buf_|, so there's room to put it back at the
// start first.
int additional_save_amount = read_buf_->offset() - read_buf_unused_offset_;
int save_amount = 0;
if (chunked_decoder_.get()) {
save_amount = chunked_decoder_->bytes_after_eof();
} else if (response_body_length_ >= 0) {
int64 extra_data_read = response_body_read_ - response_body_length_;
if (extra_data_read > 0) {
save_amount = static_cast<int>(extra_data_read);
if (result > 0)
result -= save_amount;
}
}
CHECK_LE(save_amount + additional_save_amount, kMaxBufSize);
if (read_buf_->capacity() < save_amount + additional_save_amount) {
read_buf_->SetCapacity(save_amount + additional_save_amount);
}
if (save_amount) {
memcpy(read_buf_->StartOfBuffer(), user_read_buf_->data() + result,
save_amount);
}
read_buf_->set_offset(save_amount);
if (additional_save_amount) {
memmove(read_buf_->data(),
read_buf_->StartOfBuffer() + read_buf_unused_offset_,
additional_save_amount);
read_buf_->set_offset(save_amount + additional_save_amount);
}
read_buf_unused_offset_ = 0;
} else {
io_state_ = STATE_BODY_PENDING;
user_read_buf_ = NULL;
user_read_buf_len_ = 0;
}
return result;
}
int HttpStreamParser::ParseResponseHeaders() {
int end_offset = -1;
// Look for the start of the status line, if it hasn't been found yet.
if (response_header_start_offset_ < 0) {
response_header_start_offset_ = HttpUtil::LocateStartOfStatusLine(
read_buf_->StartOfBuffer() + read_buf_unused_offset_,
read_buf_->offset() - read_buf_unused_offset_);
}
if (response_header_start_offset_ >= 0) {
end_offset = HttpUtil::LocateEndOfHeaders(
read_buf_->StartOfBuffer() + read_buf_unused_offset_,
read_buf_->offset() - read_buf_unused_offset_,
response_header_start_offset_);
} else if (read_buf_->offset() - read_buf_unused_offset_ >= 8) {
// Enough data to decide that this is an HTTP/0.9 response.
// 8 bytes = (4 bytes of junk) + "http".length()
end_offset = 0;
}
if (end_offset == -1)
return -1;
int rv = DoParseResponseHeaders(end_offset);
if (rv < 0)
return rv;
return end_offset + read_buf_unused_offset_;
}
int HttpStreamParser::DoParseResponseHeaders(int end_offset) {
scoped_refptr<HttpResponseHeaders> headers;
if (response_header_start_offset_ >= 0) {
headers = new HttpResponseHeaders(HttpUtil::AssembleRawHeaders(
read_buf_->StartOfBuffer() + read_buf_unused_offset_, end_offset));
} else {
// Enough data was read -- there is no status line.
headers = new HttpResponseHeaders(std::string("HTTP/0.9 200 OK"));
}
// Check for multiple Content-Length headers with a Transfer-Encoding header.
// If they exist, it's a potential response smuggling attack.
void* it = NULL;
const std::string content_length_header("Content-Length");
std::string content_length_value;
if (!headers->HasHeader("Transfer-Encoding") &&
headers->EnumerateHeader(
&it, content_length_header, &content_length_value)) {
// Ok, there's no Transfer-Encoding header and there's at least one
// Content-Length header. Check if there are any more Content-Length
// headers, and if so, make sure they have the same value. Otherwise, it's
// a possible response smuggling attack.
std::string content_length_value2;
while (headers->EnumerateHeader(
&it, content_length_header, &content_length_value2)) {
if (content_length_value != content_length_value2)
return ERR_RESPONSE_HEADERS_MULTIPLE_CONTENT_LENGTH;
}
}
response_->headers = headers;
response_->vary_data.Init(*request_, *response_->headers);
DVLOG(1) << __FUNCTION__ << "()"
<< " content_length = \""
<< response_->headers->GetContentLength() << "\n\""
<< " headers = \"" << GetResponseHeaderLines(*response_->headers)
<< "\"";
return OK;
}
void HttpStreamParser::CalculateResponseBodySize() {
// Figure how to determine EOF:
// For certain responses, we know the content length is always 0. From
// RFC 2616 Section 4.3 Message Body:
//
// For response messages, whether or not a message-body is included with
// a message is dependent on both the request method and the response
// status code (section 6.1.1). All responses to the HEAD request method
// MUST NOT include a message-body, even though the presence of entity-
// header fields might lead one to believe they do. All 1xx
// (informational), 204 (no content), and 304 (not modified) responses
// MUST NOT include a message-body. All other responses do include a
// message-body, although it MAY be of zero length.
switch (response_->headers->response_code()) {
// Note that 1xx was already handled earlier.
case 204: // No Content
case 205: // Reset Content
case 304: // Not Modified
response_body_length_ = 0;
break;
}
if (request_->method == "HEAD")
response_body_length_ = 0;
if (response_body_length_ == -1) {
// Ignore spurious chunked responses from HTTP/1.0 servers and
// proxies. Otherwise "Transfer-Encoding: chunked" trumps
// "Content-Length: N"
if (response_->headers->GetHttpVersion() >= HttpVersion(1, 1) &&
response_->headers->HasHeaderValue("Transfer-Encoding", "chunked")) {
chunked_decoder_.reset(new HttpChunkedDecoder());
} else {
response_body_length_ = response_->headers->GetContentLength();
// If response_body_length_ is still -1, then we have to wait
// for the server to close the connection.
}
}
}
uint64 HttpStreamParser::GetUploadProgress() const {
if (!request_body_.get())
return 0;
return request_body_->position();
}
HttpResponseInfo* HttpStreamParser::GetResponseInfo() {
return response_;
}
bool HttpStreamParser::IsResponseBodyComplete() const {
if (chunked_decoder_.get())
return chunked_decoder_->reached_eof();
if (response_body_length_ != -1)
return response_body_read_ >= response_body_length_;
return false; // Must read to EOF.
}
bool HttpStreamParser::CanFindEndOfResponse() const {
return chunked_decoder_.get() || response_body_length_ >= 0;
}
bool HttpStreamParser::IsMoreDataBuffered() const {
return read_buf_->offset() > read_buf_unused_offset_;
}
bool HttpStreamParser::IsConnectionReused() const {
ClientSocketHandle::SocketReuseType reuse_type = connection_->reuse_type();
return connection_->is_reused() ||
reuse_type == ClientSocketHandle::UNUSED_IDLE;
}
void HttpStreamParser::SetConnectionReused() {
connection_->set_is_reused(true);
}
bool HttpStreamParser::IsConnectionReusable() const {
return connection_->socket() && connection_->socket()->IsConnectedAndIdle();
}
void HttpStreamParser::GetSSLInfo(SSLInfo* ssl_info) {
if (request_->url.SchemeIs("https") && connection_->socket()) {
SSLClientSocket* ssl_socket =
static_cast<SSLClientSocket*>(connection_->socket());
ssl_socket->GetSSLInfo(ssl_info);
}
}
void HttpStreamParser::GetSSLCertRequestInfo(
SSLCertRequestInfo* cert_request_info) {
if (request_->url.SchemeIs("https") && connection_->socket()) {
SSLClientSocket* ssl_socket =
static_cast<SSLClientSocket*>(connection_->socket());
ssl_socket->GetSSLCertRequestInfo(cert_request_info);
}
}
} // namespace net
|