summaryrefslogtreecommitdiffstats
path: root/net/quic/congestion_control/tcp_cubic_sender.cc
blob: 256126f644b132d8cb7e254d81fe7cea374cd835 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "net/quic/congestion_control/tcp_cubic_sender.h"

#include <algorithm>

#include "base/metrics/histogram_macros.h"
#include "net/quic/congestion_control/prr_sender.h"
#include "net/quic/congestion_control/rtt_stats.h"
#include "net/quic/crypto/crypto_protocol.h"
#include "net/quic/proto/cached_network_parameters.pb.h"
#include "net/quic/quic_flags.h"

using std::max;
using std::min;

namespace net {

namespace {
// Constants based on TCP defaults.
// The minimum cwnd based on RFC 3782 (TCP NewReno) for cwnd reductions on a
// fast retransmission.  The cwnd after a timeout is still 1.
const QuicPacketCount kDefaultMinimumCongestionWindow = 2;
const QuicByteCount kMaxBurstBytes = 3 * kDefaultTCPMSS;
const float kRenoBeta = 0.7f;             // Reno backoff factor.
const uint32_t kDefaultNumConnections = 2;  // N-connection emulation.
}  // namespace

TcpCubicSender::TcpCubicSender(const QuicClock* clock,
                               const RttStats* rtt_stats,
                               bool reno,
                               QuicPacketCount initial_tcp_congestion_window,
                               QuicPacketCount max_tcp_congestion_window,
                               QuicConnectionStats* stats)
    : cubic_(clock),
      rtt_stats_(rtt_stats),
      stats_(stats),
      reno_(reno),
      num_connections_(kDefaultNumConnections),
      congestion_window_count_(0),
      largest_sent_packet_number_(0),
      largest_acked_packet_number_(0),
      largest_sent_at_last_cutback_(0),
      congestion_window_(initial_tcp_congestion_window),
      min_congestion_window_(kDefaultMinimumCongestionWindow),
      min4_mode_(false),
      slowstart_threshold_(max_tcp_congestion_window),
      last_cutback_exited_slowstart_(false),
      max_tcp_congestion_window_(max_tcp_congestion_window),
      initial_tcp_congestion_window_(initial_tcp_congestion_window),
      initial_max_tcp_congestion_window_(max_tcp_congestion_window) {}

TcpCubicSender::~TcpCubicSender() {
  UMA_HISTOGRAM_COUNTS("Net.QuicSession.FinalTcpCwnd", congestion_window_);
}

void TcpCubicSender::SetFromConfig(const QuicConfig& config,
                                   Perspective perspective) {
  if (perspective == Perspective::IS_SERVER) {
    if (config.HasReceivedConnectionOptions() &&
        ContainsQuicTag(config.ReceivedConnectionOptions(), kIW03)) {
      // Initial window experiment.
      congestion_window_ = 3;
    }
    if (config.HasReceivedConnectionOptions() &&
        ContainsQuicTag(config.ReceivedConnectionOptions(), kIW10)) {
      // Initial window experiment.
      congestion_window_ = 10;
    }
    if (config.HasReceivedConnectionOptions() &&
        ContainsQuicTag(config.ReceivedConnectionOptions(), kIW20)) {
      // Initial window experiment.
      congestion_window_ = 20;
    }
    if (config.HasReceivedConnectionOptions() &&
        ContainsQuicTag(config.ReceivedConnectionOptions(), kIW50)) {
      // Initial window experiment.
      congestion_window_ = 50;
    }
    if (config.HasReceivedConnectionOptions() &&
        ContainsQuicTag(config.ReceivedConnectionOptions(), kMIN1)) {
      // Min CWND experiment.
      min_congestion_window_ = 1;
    }
    if (config.HasReceivedConnectionOptions() &&
        ContainsQuicTag(config.ReceivedConnectionOptions(), kMIN4)) {
      // Min CWND of 4 experiment.
      min4_mode_ = true;
      min_congestion_window_ = 1;
    }
  }
}

void TcpCubicSender::ResumeConnectionState(
    const CachedNetworkParameters& cached_network_params,
    bool max_bandwidth_resumption) {
  QuicBandwidth bandwidth = QuicBandwidth::FromBytesPerSecond(
      max_bandwidth_resumption
          ? cached_network_params.max_bandwidth_estimate_bytes_per_second()
          : cached_network_params.bandwidth_estimate_bytes_per_second());
  QuicTime::Delta rtt_ms =
      QuicTime::Delta::FromMilliseconds(cached_network_params.min_rtt_ms());

  // Make sure CWND is in appropriate range (in case of bad data).
  QuicPacketCount new_congestion_window =
      bandwidth.ToBytesPerPeriod(rtt_ms) / kDefaultTCPMSS;
  congestion_window_ = max(min(new_congestion_window, kMaxCongestionWindow),
                           kMinCongestionWindowForBandwidthResumption);
}

void TcpCubicSender::SetNumEmulatedConnections(int num_connections) {
  num_connections_ = max(1, num_connections);
  cubic_.SetNumConnections(num_connections_);
}

void TcpCubicSender::SetMaxCongestionWindow(
    QuicByteCount max_congestion_window) {
  max_tcp_congestion_window_ = max_congestion_window / kDefaultTCPMSS;
}

float TcpCubicSender::RenoBeta() const {
  // kNConnectionBeta is the backoff factor after loss for our N-connection
  // emulation, which emulates the effective backoff of an ensemble of N
  // TCP-Reno connections on a single loss event. The effective multiplier is
  // computed as:
  return (num_connections_ - 1 + kRenoBeta) / num_connections_;
}

void TcpCubicSender::OnCongestionEvent(bool rtt_updated,
                                       QuicByteCount bytes_in_flight,
                                       const CongestionVector& acked_packets,
                                       const CongestionVector& lost_packets) {
  if (rtt_updated && InSlowStart() &&
      hybrid_slow_start_.ShouldExitSlowStart(rtt_stats_->latest_rtt(),
                                             rtt_stats_->min_rtt(),
                                             congestion_window_)) {
    slowstart_threshold_ = congestion_window_;
  }
  for (CongestionVector::const_iterator it = lost_packets.begin();
       it != lost_packets.end(); ++it) {
    OnPacketLost(it->first, bytes_in_flight);
  }
  for (CongestionVector::const_iterator it = acked_packets.begin();
       it != acked_packets.end(); ++it) {
    OnPacketAcked(it->first, it->second, bytes_in_flight);
  }
}

void TcpCubicSender::OnPacketAcked(QuicPacketNumber acked_packet_number,
                                   QuicByteCount acked_bytes,
                                   QuicByteCount bytes_in_flight) {
  largest_acked_packet_number_ =
      max(acked_packet_number, largest_acked_packet_number_);
  if (InRecovery()) {
    // PRR is used when in recovery.
    prr_.OnPacketAcked(acked_bytes);
    return;
  }
  MaybeIncreaseCwnd(acked_packet_number, bytes_in_flight);
  // TODO(ianswett): Should this even be called when not in slow start?
  hybrid_slow_start_.OnPacketAcked(acked_packet_number, InSlowStart());
}

void TcpCubicSender::OnPacketLost(QuicPacketNumber packet_number,
                                  QuicByteCount bytes_in_flight) {
  // TCP NewReno (RFC6582) says that once a loss occurs, any losses in packets
  // already sent should be treated as a single loss event, since it's expected.
  if (packet_number <= largest_sent_at_last_cutback_) {
    if (last_cutback_exited_slowstart_) {
      ++stats_->slowstart_packets_lost;
    }
    DVLOG(1) << "Ignoring loss for largest_missing:" << packet_number
             << " because it was sent prior to the last CWND cutback.";
    return;
  }
  ++stats_->tcp_loss_events;
  last_cutback_exited_slowstart_ = InSlowStart();
  if (InSlowStart()) {
    ++stats_->slowstart_packets_lost;
  }

  prr_.OnPacketLost(bytes_in_flight);

  if (reno_) {
    congestion_window_ = congestion_window_ * RenoBeta();
  } else {
    congestion_window_ =
        cubic_.CongestionWindowAfterPacketLoss(congestion_window_);
  }
  slowstart_threshold_ = congestion_window_;
  // Enforce a minimum congestion window.
  if (congestion_window_ < min_congestion_window_) {
    congestion_window_ = min_congestion_window_;
  }
  largest_sent_at_last_cutback_ = largest_sent_packet_number_;
  // reset packet count from congestion avoidance mode. We start
  // counting again when we're out of recovery.
  congestion_window_count_ = 0;
  DVLOG(1) << "Incoming loss; congestion window: " << congestion_window_
           << " slowstart threshold: " << slowstart_threshold_;
}

bool TcpCubicSender::OnPacketSent(QuicTime /*sent_time*/,
                                  QuicByteCount /*bytes_in_flight*/,
                                  QuicPacketNumber packet_number,
                                  QuicByteCount bytes,
                                  HasRetransmittableData is_retransmittable) {
  if (InSlowStart()) {
    ++(stats_->slowstart_packets_sent);
  }

  // Only update bytes_in_flight_ for data packets.
  if (is_retransmittable != HAS_RETRANSMITTABLE_DATA) {
    return false;
  }
  if (InRecovery()) {
    // PRR is used when in recovery.
    prr_.OnPacketSent(bytes);
  }
  DCHECK_LT(largest_sent_packet_number_, packet_number);
  largest_sent_packet_number_ = packet_number;
  hybrid_slow_start_.OnPacketSent(packet_number);
  return true;
}

QuicTime::Delta TcpCubicSender::TimeUntilSend(
    QuicTime /* now */,
    QuicByteCount bytes_in_flight,
    HasRetransmittableData has_retransmittable_data) const {
  if (has_retransmittable_data == NO_RETRANSMITTABLE_DATA) {
    DCHECK(!FLAGS_quic_respect_send_alarm2);
    // For TCP we can always send an ACK immediately.
    return QuicTime::Delta::Zero();
  }
  if (InRecovery()) {
    // PRR is used when in recovery.
    return prr_.TimeUntilSend(GetCongestionWindow(), bytes_in_flight,
                              slowstart_threshold_ * kDefaultTCPMSS);
  }
  if (GetCongestionWindow() > bytes_in_flight) {
    return QuicTime::Delta::Zero();
  }
  if (min4_mode_ && bytes_in_flight < 4 * kDefaultTCPMSS) {
    return QuicTime::Delta::Zero();
  }
  return QuicTime::Delta::Infinite();
}

QuicBandwidth TcpCubicSender::PacingRate() const {
  // We pace at twice the rate of the underlying sender's bandwidth estimate
  // during slow start and 1.25x during congestion avoidance to ensure pacing
  // doesn't prevent us from filling the window.
  QuicTime::Delta srtt = rtt_stats_->smoothed_rtt();
  if (srtt.IsZero()) {
    srtt = QuicTime::Delta::FromMicroseconds(rtt_stats_->initial_rtt_us());
  }
  const QuicBandwidth bandwidth =
      QuicBandwidth::FromBytesAndTimeDelta(GetCongestionWindow(), srtt);
  return bandwidth.Scale(InSlowStart() ? 2 : 1.25);
}

QuicBandwidth TcpCubicSender::BandwidthEstimate() const {
  QuicTime::Delta srtt = rtt_stats_->smoothed_rtt();
  if (srtt.IsZero()) {
    // If we haven't measured an rtt, the bandwidth estimate is unknown.
    return QuicBandwidth::Zero();
  }
  return QuicBandwidth::FromBytesAndTimeDelta(GetCongestionWindow(), srtt);
}

QuicTime::Delta TcpCubicSender::RetransmissionDelay() const {
  if (rtt_stats_->smoothed_rtt().IsZero()) {
    return QuicTime::Delta::Zero();
  }
  return rtt_stats_->smoothed_rtt().Add(
      rtt_stats_->mean_deviation().Multiply(4));
}

QuicByteCount TcpCubicSender::GetCongestionWindow() const {
  return congestion_window_ * kDefaultTCPMSS;
}

bool TcpCubicSender::InSlowStart() const {
  return congestion_window_ < slowstart_threshold_;
}

QuicByteCount TcpCubicSender::GetSlowStartThreshold() const {
  return slowstart_threshold_ * kDefaultTCPMSS;
}

bool TcpCubicSender::IsCwndLimited(QuicByteCount bytes_in_flight) const {
  const QuicByteCount congestion_window_bytes = GetCongestionWindow();
  if (bytes_in_flight >= congestion_window_bytes) {
    return true;
  }
  const QuicByteCount available_bytes =
      congestion_window_bytes - bytes_in_flight;
  const bool slow_start_limited =
      InSlowStart() && bytes_in_flight > congestion_window_bytes / 2;
  return slow_start_limited || available_bytes <= kMaxBurstBytes;
}

bool TcpCubicSender::InRecovery() const {
  return largest_acked_packet_number_ <= largest_sent_at_last_cutback_ &&
         largest_acked_packet_number_ != 0;
}

// Called when we receive an ack. Normal TCP tracks how many packets one ack
// represents, but quic has a separate ack for each packet.
void TcpCubicSender::MaybeIncreaseCwnd(QuicPacketNumber acked_packet_number,
                                       QuicByteCount bytes_in_flight) {
  LOG_IF(DFATAL, InRecovery()) << "Never increase the CWND during recovery.";
  // Do not increase the congestion window unless the sender is close to using
  // the current window.
  if (!IsCwndLimited(bytes_in_flight)) {
    cubic_.OnApplicationLimited();
    return;
  }
  if (congestion_window_ >= max_tcp_congestion_window_) {
    return;
  }
  if (InSlowStart()) {
    // TCP slow start, exponential growth, increase by one for each ACK.
    ++congestion_window_;
    DVLOG(1) << "Slow start; congestion window: " << congestion_window_
             << " slowstart threshold: " << slowstart_threshold_;
    return;
  }
  // Congestion avoidance
  if (reno_) {
    // Classic Reno congestion avoidance.
    ++congestion_window_count_;
    // Divide by num_connections to smoothly increase the CWND at a faster
    // rate than conventional Reno.
    if (congestion_window_count_ * num_connections_ >= congestion_window_) {
      ++congestion_window_;
      congestion_window_count_ = 0;
    }

    DVLOG(1) << "Reno; congestion window: " << congestion_window_
             << " slowstart threshold: " << slowstart_threshold_
             << " congestion window count: " << congestion_window_count_;
  } else {
    congestion_window_ = min(max_tcp_congestion_window_,
                             cubic_.CongestionWindowAfterAck(
                                 congestion_window_, rtt_stats_->min_rtt()));
    DVLOG(1) << "Cubic; congestion window: " << congestion_window_
             << " slowstart threshold: " << slowstart_threshold_;
  }
}

void TcpCubicSender::OnRetransmissionTimeout(bool packets_retransmitted) {
  largest_sent_at_last_cutback_ = 0;
  if (!packets_retransmitted) {
    return;
  }
  cubic_.Reset();
  hybrid_slow_start_.Restart();
  slowstart_threshold_ = congestion_window_ / 2;
  congestion_window_ = min_congestion_window_;
}

void TcpCubicSender::OnConnectionMigration() {
  hybrid_slow_start_.Restart();
  cubic_.Reset();
  prr_ = PrrSender();
  congestion_window_count_ = 0;
  largest_sent_packet_number_ = 0;
  largest_acked_packet_number_ = 0;
  largest_sent_at_last_cutback_ = 0;
  congestion_window_ = initial_tcp_congestion_window_;
  slowstart_threshold_ = initial_max_tcp_congestion_window_;
  last_cutback_exited_slowstart_ = false;
  max_tcp_congestion_window_ = initial_max_tcp_congestion_window_;
}

CongestionControlType TcpCubicSender::GetCongestionControlType() const {
  return reno_ ? kReno : kCubic;
}

}  // namespace net