summaryrefslogtreecommitdiffstats
path: root/net/quic/quic_fec_group.cc
blob: 8431ff3e6f5bf5b722c2b380152b04a480ca4d22 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "net/quic/quic_fec_group.h"

#include <limits>

#include "base/logging.h"

using base::StringPiece;
using std::numeric_limits;
using std::set;

namespace net {

namespace {
const QuicPacketSequenceNumber kNoSequenceNumber = kuint64max;
}  // namespace

QuicFecGroup::QuicFecGroup()
    : min_protected_packet_(kNoSequenceNumber),
      max_protected_packet_(kNoSequenceNumber),
      payload_parity_len_(0),
      entropy_parity_(false) {
}

QuicFecGroup::~QuicFecGroup() {}

bool QuicFecGroup::Update(const QuicPacketHeader& header,
                          StringPiece decrypted_payload) {
  if (received_packets_.count(header.packet_sequence_number) != 0) {
    return false;
  }
  if (min_protected_packet_ != kNoSequenceNumber &&
      max_protected_packet_ != kNoSequenceNumber &&
      (header.packet_sequence_number < min_protected_packet_ ||
       header.packet_sequence_number > max_protected_packet_)) {
    DLOG(ERROR) << "FEC group does not cover received packet: "
                << header.packet_sequence_number;
    return false;
  }
  if (!UpdateParity(decrypted_payload, header.entropy_flag)) {
    return false;
  }
  received_packets_.insert(header.packet_sequence_number);
  return true;
}

bool QuicFecGroup::UpdateFec(
    QuicPacketSequenceNumber fec_packet_sequence_number,
    bool fec_entropy_flag,
    const QuicFecData& fec) {
  if (min_protected_packet_ != kNoSequenceNumber) {
    return false;
  }
  SequenceNumberSet::const_iterator it = received_packets_.begin();
  while (it != received_packets_.end()) {
    if ((*it < fec.fec_group) ||
        (*it >= fec_packet_sequence_number)) {
      DLOG(ERROR) << "FEC group does not cover received packet: " << *it;
      return false;
    }
    ++it;
  }
  if (!UpdateParity(fec.redundancy, fec_entropy_flag)) {
    return false;
  }
  min_protected_packet_ = fec.fec_group;
  max_protected_packet_ = fec_packet_sequence_number - 1;
  return true;
}

bool QuicFecGroup::CanRevive() const {
  // We can revive if we're missing exactly 1 packet.
  return NumMissingPackets() == 1;
}

bool QuicFecGroup::IsFinished() const {
  // We are finished if we are not missing any packets.
  return NumMissingPackets() == 0;
}

size_t QuicFecGroup::Revive(QuicPacketHeader* header,
                            char* decrypted_payload,
                            size_t decrypted_payload_len) {
  if (!CanRevive()) {
    return 0;
  }

  // Identify the packet sequence number to be resurrected.
  QuicPacketSequenceNumber missing = kNoSequenceNumber;
  for (QuicPacketSequenceNumber i = min_protected_packet_;
       i <= max_protected_packet_; ++i) {
    // Is this packet missing?
    if (received_packets_.count(i) == 0) {
      missing = i;
      break;
    }
  }
  DCHECK_NE(kNoSequenceNumber, missing);

  DCHECK_LE(payload_parity_len_, decrypted_payload_len);
  if (payload_parity_len_ > decrypted_payload_len) {
    return 0;
  }
  for (size_t i = 0; i < payload_parity_len_; ++i) {
    decrypted_payload[i] = payload_parity_[i];
  }

  header->packet_sequence_number = missing;
  header->entropy_flag = entropy_parity_;

  received_packets_.insert(missing);
  return payload_parity_len_;
}

bool QuicFecGroup::ProtectsPacketsBefore(QuicPacketSequenceNumber num) const {
  if (max_protected_packet_ != kNoSequenceNumber) {
    return max_protected_packet_ < num;
  }
  // Since we might not yet have recevied the FEC packet, we must check
  // the packets we have received.
  return *received_packets_.begin() < num;
}

bool QuicFecGroup::UpdateParity(StringPiece payload, bool entropy) {
  DCHECK_LE(payload.size(), kMaxPacketSize);
  if (payload.size() > kMaxPacketSize) {
    DLOG(ERROR) << "Illegal payload size: " << payload.size();
    return false;
  }
  if (payload_parity_len_ < payload.size()) {
    payload_parity_len_ = payload.size();
  }
  DCHECK_LE(payload.size(), kMaxPacketSize);
  if (received_packets_.size() == 0 &&
      min_protected_packet_ == kNoSequenceNumber) {
    // Initialize the parity to the value of this payload
    memcpy(payload_parity_, payload.data(), payload.size());
    if (payload.size() < kMaxPacketSize) {
      // TODO(rch): expand as needed.
      memset(payload_parity_ + payload.size(), 0,
             kMaxPacketSize - payload.size());
    }
    entropy_parity_ = entropy;
    return true;
  }
  // Update the parity by XORing in the data (padding with 0s if necessary).
  for (size_t i = 0; i < kMaxPacketSize; ++i) {
    uint8 byte = i < payload.size() ? payload[i] : 0x00;
    payload_parity_[i] ^= byte;
  }
  // xor of boolean values.
  entropy_parity_ = (entropy_parity_ != entropy);
  return true;
}

size_t QuicFecGroup::NumMissingPackets() const {
  if (min_protected_packet_ == kNoSequenceNumber)
    return numeric_limits<size_t>::max();
  return (max_protected_packet_ - min_protected_packet_ + 1) -
      received_packets_.size();
}

}  // namespace net