summaryrefslogtreecommitdiffstats
path: root/net/quic/quic_framer.cc
blob: a794701caed0da174becd7ad239887aaf4e3c32e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "net/quic/quic_framer.h"

#include "base/hash_tables.h"
#include "net/quic/crypto/quic_decrypter.h"
#include "net/quic/crypto/quic_encrypter.h"
#include "net/quic/quic_data_reader.h"
#include "net/quic/quic_data_writer.h"
#include "net/quic/quic_utils.h"

using base::StringPiece;
using std::make_pair;
using std::map;
using std::numeric_limits;
using std::string;

namespace net {

namespace {

// Mask to select the lowest 48 bits of a sequence number.
const QuicPacketSequenceNumber kSequenceNumberMask =
    GG_UINT64_C(0x0000FFFFFFFFFFFF);

// Returns the absolute value of the difference between |a| and |b|.
QuicPacketSequenceNumber Delta(QuicPacketSequenceNumber a,
                               QuicPacketSequenceNumber b) {
  // Since these are unsigned numbers, we can't just return abs(a - b)
  if (a < b) {
    return b - a;
  }
  return a - b;
}

QuicPacketSequenceNumber ClosestTo(QuicPacketSequenceNumber target,
                                   QuicPacketSequenceNumber a,
                                   QuicPacketSequenceNumber b) {
  return (Delta(target, a) < Delta(target, b)) ? a : b;
}

}  // namespace

QuicFramer::QuicFramer(QuicDecrypter* decrypter, QuicEncrypter* encrypter)
    : visitor_(NULL),
      fec_builder_(NULL),
      error_(QUIC_NO_ERROR),
      last_sequence_number_(0),
      decrypter_(decrypter),
      encrypter_(encrypter) {
}

QuicFramer::~QuicFramer() {}

bool CanTruncate(const QuicFrame& frame) {
  if (frame.type == ACK_FRAME ||
      frame.type == CONNECTION_CLOSE_FRAME) {
    return true;
  }
  return false;
}

size_t QuicFramer::GetSerializedFrameLength(
    const QuicFrame& frame, size_t free_bytes, bool first_frame) {
  if (frame.type == PADDING_FRAME) {
    // PADDING implies end of packet.
    return free_bytes;
  }
  size_t frame_len = kFrameTypeSize;
  frame_len += ComputeFramePayloadLength(frame);
  if (frame_len > free_bytes) {
    // Only truncate the first frame in a packet, so if subsequent ones go
    // over, stop including more frames.
    if (!first_frame) {
      return 0;
    }
    if (CanTruncate(frame)) {
      // Truncate the frame so the packet will not exceed kMaxPacketSize.
      // Note that we may not use every byte of the writer in this case.
      DLOG(INFO) << "Truncating large frame";
      return free_bytes;
    }
  }
  return frame_len;
}

QuicPacket* QuicFramer::ConstructFrameDataPacket(const QuicPacketHeader& header,
                                                 const QuicFrames& frames) {
  const size_t max_plaintext_size = GetMaxPlaintextSize(kMaxPacketSize);
  size_t packet_size = kPacketHeaderSize;
  for (size_t i = 0; i < frames.size(); ++i) {
    DCHECK_LE(packet_size, max_plaintext_size);
    const size_t frame_size = GetSerializedFrameLength(
        frames[i], max_plaintext_size - packet_size, i == 0);
    DCHECK(frame_size);
    packet_size += frame_size;
  }
  return ConstructFrameDataPacket(header, frames, packet_size);
}

QuicPacket* QuicFramer::ConstructFrameDataPacket(const QuicPacketHeader& header,
                                                 const QuicFrames& frames,
                                                 size_t packet_size) {
  QuicDataWriter writer(packet_size);
  if (!WritePacketHeader(header, &writer)) {
    return NULL;
  }

  for (size_t i = 0; i < frames.size(); ++i) {
    const QuicFrame& frame = frames[i];
    if (!writer.WriteUInt8(frame.type)) {
      return NULL;
    }

    switch (frame.type) {
      case PADDING_FRAME:
        writer.WritePadding();
        break;
      case STREAM_FRAME:
        if (!AppendStreamFramePayload(*frame.stream_frame, &writer)) {
          return NULL;
        }
        break;
      case ACK_FRAME:
        if (!AppendAckFramePayload(*frame.ack_frame, &writer)) {
          return NULL;
        }
        break;
      case CONGESTION_FEEDBACK_FRAME:
        if (!AppendQuicCongestionFeedbackFramePayload(
                *frame.congestion_feedback_frame, &writer)) {
          return NULL;
        }
        break;
      case RST_STREAM_FRAME:
        if (!AppendRstStreamFramePayload(*frame.rst_stream_frame, &writer)) {
          return NULL;
        }
        break;
      case CONNECTION_CLOSE_FRAME:
        if (!AppendConnectionCloseFramePayload(
                *frame.connection_close_frame, &writer)) {
          return NULL;
        }
        break;
      default:
        RaiseError(QUIC_INVALID_FRAME_DATA);
        return NULL;
    }
  }

  // Save the length before writing, because take clears it.
  const size_t len = writer.length();
  // Less than or equal because truncated acks end up with max_plaintex_size
  // length, even though they're typically slightly shorter.
  DCHECK_LE(len, packet_size);
  QuicPacket* packet = QuicPacket::NewDataPacket(writer.take(), len, true);

  if (fec_builder_) {
    fec_builder_->OnBuiltFecProtectedPayload(header,
                                             packet->FecProtectedData());
  }

  return packet;
}

QuicPacket* QuicFramer::ConstructFecPacket(const QuicPacketHeader& header,
                                           const QuicFecData& fec) {
  size_t len = kPacketHeaderSize;
  len += fec.redundancy.length();

  QuicDataWriter writer(len);

  if (!WritePacketHeader(header, &writer)) {
    return NULL;
  }

  if (!writer.WriteBytes(fec.redundancy.data(), fec.redundancy.length())) {
    return NULL;
  }

  return QuicPacket::NewFecPacket(writer.take(), len, true);
}

// static
QuicEncryptedPacket* QuicFramer::ConstructPublicResetPacket(
    const QuicPublicResetPacket& packet) {
  DCHECK_EQ(PACKET_PUBLIC_FLAGS_RST,
            PACKET_PUBLIC_FLAGS_RST & packet.public_header.flags);
  size_t len = kPublicResetPacketSize;
  QuicDataWriter writer(len);

  if (!writer.WriteUInt64(packet.public_header.guid)) {
    return NULL;
  }

  uint8 flags = static_cast<uint8>(packet.public_header.flags);
  if (!writer.WriteUInt8(flags)) {
    return NULL;
  }

  if (!writer.WriteUInt64(packet.nonce_proof)) {
    return NULL;
  }

  if (!AppendPacketSequenceNumber(packet.rejected_sequence_number,
                                  &writer)) {
    return NULL;
  }

  return new QuicEncryptedPacket(writer.take(), len, true);
}

bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) {
  DCHECK(!reader_.get());
  reader_.reset(new QuicDataReader(packet.data(), packet.length()));

  // First parse the public header.
  QuicPacketPublicHeader public_header;
  if (!ProcessPublicHeader(&public_header)) {
    DLOG(WARNING) << "Unable to process public header.";
    reader_.reset(NULL);
    return RaiseError(QUIC_INVALID_PACKET_HEADER);
  }

  bool rv;
  if (public_header.flags & PACKET_PUBLIC_FLAGS_RST) {
    rv = ProcessPublicResetPacket(public_header);
  } else {
    rv = ProcessDataPacket(public_header, packet);
  }

  reader_.reset(NULL);
  return rv;
}

bool QuicFramer::ProcessDataPacket(
    const QuicPacketPublicHeader& public_header,
    const QuicEncryptedPacket& packet) {
  visitor_->OnPacket();

  QuicPacketHeader header(public_header);
  if (!ProcessPacketHeader(&header, packet)) {
    DLOG(WARNING) << "Unable to process data packet header.";
    return RaiseError(QUIC_INVALID_PACKET_HEADER);
  }

  if (!visitor_->OnPacketHeader(header)) {
    return true;
  }

  if (packet.length() > kMaxPacketSize) {
    DLOG(WARNING) << "Packet too large: " << packet.length();
    return RaiseError(QUIC_PACKET_TOO_LARGE);
  }

  // Handle the payload.
  if ((header.private_flags & PACKET_PRIVATE_FLAGS_FEC) == 0) {
    if (header.fec_group != 0) {
      StringPiece payload = reader_->PeekRemainingPayload();
      visitor_->OnFecProtectedPayload(payload);
    }
    if (!ProcessFrameData()) {
      DCHECK_NE(QUIC_NO_ERROR, error_);  // ProcessFrameData sets the error.
      DLOG(WARNING) << "Unable to process frame data.";
      return false;
    }
  } else {
    QuicFecData fec_data;
    fec_data.fec_group = header.fec_group;
    fec_data.redundancy = reader_->ReadRemainingPayload();
    visitor_->OnFecData(fec_data);
  }

  visitor_->OnPacketComplete();
  return true;
}

bool QuicFramer::ProcessPublicResetPacket(
    const QuicPacketPublicHeader& public_header) {
  QuicPublicResetPacket packet(public_header);
  if (!reader_->ReadUInt64(&packet.nonce_proof)) {
    set_detailed_error("Unable to read nonce proof.");
    return false;
  }
  // TODO(satyamshekhar): validate nonce to protect against DoS.

  if (!reader_->ReadUInt48(&packet.rejected_sequence_number)) {
    set_detailed_error("Unable to read rejected sequence number.");
    return false;
  }
  visitor_->OnPublicResetPacket(packet);
  return true;
}

bool QuicFramer::ProcessRevivedPacket(const QuicPacketHeader& header,
                                      StringPiece payload) {
  DCHECK(!reader_.get());

  visitor_->OnRevivedPacket();

  visitor_->OnPacketHeader(header);

  if (payload.length() > kMaxPacketSize) {
    set_detailed_error("Revived packet too large.");
    return RaiseError(QUIC_PACKET_TOO_LARGE);
  }

  reader_.reset(new QuicDataReader(payload.data(), payload.length()));
  if (!ProcessFrameData()) {
    DCHECK_NE(QUIC_NO_ERROR, error_);  // ProcessFrameData sets the error.
    DLOG(WARNING) << "Unable to process frame data.";
    return false;
  }

  visitor_->OnPacketComplete();
  reader_.reset(NULL);
  return true;
}

bool QuicFramer::WritePacketHeader(const QuicPacketHeader& header,
                                   QuicDataWriter* writer) {
  if (!writer->WriteUInt64(header.public_header.guid)) {
    return false;
  }

  uint8 flags = static_cast<uint8>(header.public_header.flags);
  if (!writer->WriteUInt8(flags)) {
    return false;
  }

  if (!AppendPacketSequenceNumber(header.packet_sequence_number, writer)) {
    return false;
  }

  flags = static_cast<uint8>(header.private_flags);
  if (!writer->WriteUInt8(flags)) {
    return false;
  }

  // Offset from the current packet sequence number to the first fec
  // protected packet, or kNoFecOffset to signal no FEC protection.
  uint8 first_fec_protected_packet_offset = kNoFecOffset;

  // The FEC group number is the sequence number of the first fec
  // protected packet, or 0 if this packet is not protected.
  if (header.fec_group != 0) {
    DCHECK_GE(header.packet_sequence_number, header.fec_group);
    DCHECK_GT(255u, header.packet_sequence_number - header.fec_group);
    first_fec_protected_packet_offset =
        header.packet_sequence_number - header.fec_group;
  }
  if (!writer->WriteBytes(&first_fec_protected_packet_offset, 1)) {
    return false;
  }

  return true;
}

QuicPacketSequenceNumber QuicFramer::CalculatePacketSequenceNumberFromWire(
    QuicPacketSequenceNumber packet_sequence_number) const {
  // The new sequence number might have wrapped to the next epoc, or
  // it might have reverse wrapped to the previous epoch, or it might
  // remain in the same epoch.  Select the sequence number closest to the
  // previous sequence number.
  QuicPacketSequenceNumber epoch = last_sequence_number_ & ~kSequenceNumberMask;
  QuicPacketSequenceNumber prev_epoch = epoch - (GG_UINT64_C(1) << 48);
  QuicPacketSequenceNumber next_epoch = epoch + (GG_UINT64_C(1) << 48);

  return ClosestTo(last_sequence_number_,
                   epoch + packet_sequence_number,
                   ClosestTo(last_sequence_number_,
                             prev_epoch + packet_sequence_number,
                             next_epoch + packet_sequence_number));
}

bool QuicFramer::ProcessPublicHeader(QuicPacketPublicHeader* public_header) {
  if (!reader_->ReadUInt64(&public_header->guid)) {
    set_detailed_error("Unable to read GUID.");
    return false;
  }

  uint8 public_flags;
  if (!reader_->ReadBytes(&public_flags, 1)) {
    set_detailed_error("Unable to read public flags.");
    return false;
  }

  if (public_flags > PACKET_PUBLIC_FLAGS_MAX) {
    set_detailed_error("Illegal public flags value.");
    return false;
  }

  public_header->flags = static_cast<QuicPacketPublicFlags>(public_flags);
  return true;
}

// static
bool QuicFramer::ReadGuidFromPacket(const QuicEncryptedPacket& packet,
                                    QuicGuid* guid) {
  QuicDataReader reader(packet.data(), packet.length());
  return reader.ReadUInt64(guid);
}

bool QuicFramer::ProcessPacketHeader(
    QuicPacketHeader* header,
    const QuicEncryptedPacket& packet) {
  if (!ProcessPacketSequenceNumber(&header->packet_sequence_number)) {
    set_detailed_error("Unable to read sequence number.");
    return false;
  }

  if (header->packet_sequence_number == 0u) {
    set_detailed_error("Packet sequence numbers cannot be 0.");
    return false;
  }

  if (!DecryptPayload(packet)) {
    DLOG(WARNING) << "Unable to decrypt payload.";
    return RaiseError(QUIC_DECRYPTION_FAILURE);
  }

  uint8 private_flags;
  if (!reader_->ReadBytes(&private_flags, 1)) {
    set_detailed_error("Unable to read private flags.");
    return false;
  }

  if (private_flags > PACKET_PRIVATE_FLAGS_MAX) {
    set_detailed_error("Illegal private flags value.");
    return false;
  }

  header->private_flags = static_cast<QuicPacketPrivateFlags>(private_flags);

  uint8 first_fec_protected_packet_offset;
  if (!reader_->ReadBytes(&first_fec_protected_packet_offset, 1)) {
    set_detailed_error("Unable to read first fec protected packet offset.");
    return false;
  }
  header->fec_group = first_fec_protected_packet_offset == kNoFecOffset ? 0 :
      header->packet_sequence_number - first_fec_protected_packet_offset;

  // Set the last sequence number after we have decrypted the packet
  // so we are confident is not attacker controlled.
  last_sequence_number_ = header->packet_sequence_number;
  return true;
}

bool QuicFramer::ProcessPacketSequenceNumber(
    QuicPacketSequenceNumber* sequence_number) {
  QuicPacketSequenceNumber wire_sequence_number;
  if (!reader_->ReadUInt48(&wire_sequence_number)) {
    return false;
  }

  *sequence_number =
      CalculatePacketSequenceNumberFromWire(wire_sequence_number);
  return true;
}

bool QuicFramer::ProcessFrameData() {
  if (reader_->IsDoneReading()) {
    set_detailed_error("Unable to read frame type.");
    return RaiseError(QUIC_INVALID_FRAME_DATA);
  }
  while (!reader_->IsDoneReading()) {
    uint8 frame_type;
    if (!reader_->ReadBytes(&frame_type, 1)) {
      set_detailed_error("Unable to read frame type.");
      return RaiseError(QUIC_INVALID_FRAME_DATA);
    }
    switch (frame_type) {
      case PADDING_FRAME:
        // We're done with the packet
        return true;
      case STREAM_FRAME:
        if (!ProcessStreamFrame()) {
          return RaiseError(QUIC_INVALID_FRAME_DATA);
        }
        break;
      case ACK_FRAME: {
        QuicAckFrame frame;
        if (!ProcessAckFrame(&frame)) {
          return RaiseError(QUIC_INVALID_FRAME_DATA);
        }
        break;
      }
      case CONGESTION_FEEDBACK_FRAME: {
        QuicCongestionFeedbackFrame frame;
        if (!ProcessQuicCongestionFeedbackFrame(&frame)) {
          return RaiseError(QUIC_INVALID_FRAME_DATA);
        }
        break;
      }
      case RST_STREAM_FRAME:
        if (!ProcessRstStreamFrame()) {
          return RaiseError(QUIC_INVALID_RST_STREAM_DATA);
        }
        break;
      case CONNECTION_CLOSE_FRAME:
        if (!ProcessConnectionCloseFrame()) {
          return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA);
        }
        break;
      default:
        set_detailed_error("Illegal frame type.");
        DLOG(WARNING) << "Illegal frame type: "
                      << static_cast<int>(frame_type);
        return RaiseError(QUIC_INVALID_FRAME_DATA);
    }
  }

  return true;
}

bool QuicFramer::ProcessStreamFrame() {
  QuicStreamFrame frame;
  if (!reader_->ReadUInt32(&frame.stream_id)) {
    set_detailed_error("Unable to read stream_id.");
    return false;
  }

  uint8 fin;
  if (!reader_->ReadBytes(&fin, 1)) {
    set_detailed_error("Unable to read fin.");
    return false;
  }
  if (fin > 1) {
    set_detailed_error("Invalid fin value.");
    return false;
  }
  frame.fin = (fin == 1);

  if (!reader_->ReadUInt64(&frame.offset)) {
    set_detailed_error("Unable to read offset.");
    return false;
  }

  if (!reader_->ReadStringPiece16(&frame.data)) {
    set_detailed_error("Unable to read frame data.");
    return false;
  }

  visitor_->OnStreamFrame(frame);
  return true;
}

bool QuicFramer::ProcessAckFrame(QuicAckFrame* frame) {
  if (!ProcessSentInfo(&frame->sent_info)) {
    return false;
  }
  if (!ProcessReceivedInfo(&frame->received_info)) {
    return false;
  }
  visitor_->OnAckFrame(*frame);
  return true;
}

bool QuicFramer::ProcessReceivedInfo(ReceivedPacketInfo* received_info) {
  if (!ProcessPacketSequenceNumber(&received_info->largest_observed)) {
     set_detailed_error("Unable to read largest observed.");
     return false;
  }

  uint8 num_missing_packets;
  if (!reader_->ReadBytes(&num_missing_packets, 1)) {
    set_detailed_error("Unable to read num missing packets.");
    return false;
  }

  for (int i = 0; i < num_missing_packets; ++i) {
    QuicPacketSequenceNumber sequence_number;
    if (!ProcessPacketSequenceNumber(&sequence_number)) {
      set_detailed_error("Unable to read sequence number in missing packets.");
      return false;
    }
    received_info->missing_packets.insert(sequence_number);
  }

  return true;
}

bool QuicFramer::ProcessSentInfo(SentPacketInfo* sent_info) {
  if (!ProcessPacketSequenceNumber(&sent_info->least_unacked)) {
    set_detailed_error("Unable to read least unacked.");
    return false;
  }

  return true;
}

bool QuicFramer::ProcessQuicCongestionFeedbackFrame(
    QuicCongestionFeedbackFrame* frame) {
  uint8 feedback_type;
  if (!reader_->ReadBytes(&feedback_type, 1)) {
    set_detailed_error("Unable to read congestion feedback type.");
    return false;
  }
  frame->type =
      static_cast<CongestionFeedbackType>(feedback_type);

  switch (frame->type) {
    case kInterArrival: {
      CongestionFeedbackMessageInterArrival* inter_arrival =
          &frame->inter_arrival;
      if (!reader_->ReadUInt16(
              &inter_arrival->accumulated_number_of_lost_packets)) {
        set_detailed_error(
            "Unable to read accumulated number of lost packets.");
        return false;
      }
      uint8 num_received_packets;
      if (!reader_->ReadBytes(&num_received_packets, 1)) {
        set_detailed_error("Unable to read num received packets.");
        return false;
      }

      if (num_received_packets > 0u) {
        uint64 smallest_received;
        if (!ProcessPacketSequenceNumber(&smallest_received)) {
          set_detailed_error("Unable to read smallest received.");
          return false;
        }

        uint64 time_received_us;
        if (!reader_->ReadUInt64(&time_received_us)) {
          set_detailed_error("Unable to read time received.");
          return false;
        }

        inter_arrival->received_packet_times.insert(
            make_pair(smallest_received,
                      QuicTime::FromMicroseconds(time_received_us)));

        for (int i = 0; i < num_received_packets - 1; ++i) {
          uint16 sequence_delta;
          if (!reader_->ReadUInt16(&sequence_delta)) {
            set_detailed_error(
                "Unable to read sequence delta in received packets.");
            return false;
          }

          int32 time_delta_us;
          if (!reader_->ReadBytes(&time_delta_us, sizeof(time_delta_us))) {
            set_detailed_error(
                "Unable to read time delta in received packets.");
            return false;
          }
          QuicPacketSequenceNumber packet = smallest_received + sequence_delta;
          inter_arrival->received_packet_times.insert(
              make_pair(packet, QuicTime::FromMicroseconds(time_received_us +
                                                           time_delta_us)));
        }
      }
      break;
    }
    case kFixRate: {
      uint32 bitrate = 0;
      if (!reader_->ReadUInt32(&bitrate)) {
        set_detailed_error("Unable to read bitrate.");
        return false;
      }
      frame->fix_rate.bitrate = QuicBandwidth::FromBytesPerSecond(bitrate);
      break;
    }
    case kTCP: {
      CongestionFeedbackMessageTCP* tcp = &frame->tcp;
      if (!reader_->ReadUInt16(&tcp->accumulated_number_of_lost_packets)) {
        set_detailed_error(
            "Unable to read accumulated number of lost packets.");
        return false;
      }
      uint16 receive_window = 0;
      if (!reader_->ReadUInt16(&receive_window)) {
        set_detailed_error("Unable to read receive window.");
        return false;
      }
      // Simple bit packing, don't send the 4 least significant bits.
      tcp->receive_window = static_cast<QuicByteCount>(receive_window) << 4;
      break;
    }
    default:
      set_detailed_error("Illegal congestion feedback type.");
      DLOG(WARNING) << "Illegal congestion feedback type: "
                    << frame->type;
      return RaiseError(QUIC_INVALID_FRAME_DATA);
  }

  visitor_->OnCongestionFeedbackFrame(*frame);
  return true;
}

bool QuicFramer::ProcessRstStreamFrame() {
  QuicRstStreamFrame frame;
  if (!reader_->ReadUInt32(&frame.stream_id)) {
    set_detailed_error("Unable to read stream_id.");
    return false;
  }

  if (!reader_->ReadUInt64(&frame.offset)) {
    set_detailed_error("Unable to read offset in rst frame.");
    return false;
  }

  uint32 error_code;
  if (!reader_->ReadUInt32(&error_code)) {
    set_detailed_error("Unable to read rst stream error code.");
    return false;
  }
  frame.error_code = static_cast<QuicErrorCode>(error_code);

  StringPiece error_details;
  if (!reader_->ReadStringPiece16(&error_details)) {
    set_detailed_error("Unable to read rst stream error details.");
    return false;
  }
  frame.error_details = error_details.as_string();

  visitor_->OnRstStreamFrame(frame);
  return true;
}

bool QuicFramer::ProcessConnectionCloseFrame() {
  QuicConnectionCloseFrame frame;

  uint32 error_code;
  if (!reader_->ReadUInt32(&error_code)) {
    set_detailed_error("Unable to read connection close error code.");
    return false;
  }
  frame.error_code = static_cast<QuicErrorCode>(error_code);

  StringPiece error_details;
  if (!reader_->ReadStringPiece16(&error_details)) {
    set_detailed_error("Unable to read connection close error details.");
    return false;
  }
  frame.error_details = error_details.as_string();

  if (!ProcessAckFrame(&frame.ack_frame)) {
    DLOG(WARNING) << "Unable to process ack frame.";
    return false;
  }

  visitor_->OnConnectionCloseFrame(frame);
  return true;
}

QuicEncryptedPacket* QuicFramer::EncryptPacket(const QuicPacket& packet) {
  scoped_ptr<QuicData> out(encrypter_->Encrypt(packet.AssociatedData(),
                                               packet.Plaintext()));
  if (out.get() == NULL) {
    RaiseError(QUIC_ENCRYPTION_FAILURE);
    return NULL;
  }
  size_t len = kStartOfEncryptedData + out->length();
  char* buffer = new char[len];
  // TODO(rch): eliminate this buffer copy by passing in a buffer to Encrypt().
  memcpy(buffer, packet.data(), kStartOfEncryptedData);
  memcpy(buffer + kStartOfEncryptedData, out->data(), out->length());
  return new QuicEncryptedPacket(buffer, len, true);
}

size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) {
  return encrypter_->GetMaxPlaintextSize(ciphertext_size);
}

bool QuicFramer::DecryptPayload(const QuicEncryptedPacket& packet) {
  StringPiece encrypted;
  if (!reader_->ReadStringPiece(&encrypted, reader_->BytesRemaining())) {
    return false;
  }
  DCHECK(decrypter_.get() != NULL);
  decrypted_.reset(decrypter_->Decrypt(packet.AssociatedData(), encrypted));
  if  (decrypted_.get() == NULL) {
    return false;
  }

  reader_.reset(new QuicDataReader(decrypted_->data(), decrypted_->length()));
  return true;
}

size_t QuicFramer::ComputeFramePayloadLength(const QuicFrame& frame) {
  size_t len = 0;
  // We use "magic numbers" here because sizeof(member_) is not necessarily the
  // same as sizeof(member_wire_format).
  switch (frame.type) {
    case STREAM_FRAME:
      len += 4;  // stream id
      len += 1;  // fin
      len += 8;  // offset
      len += 2;  // space for the 16 bit length
      len += frame.stream_frame->data.size();
      break;
    case ACK_FRAME: {
      const QuicAckFrame& ack = *frame.ack_frame;
      len += 6;  // largest observed packet sequence number
      len += 1;  // num missing packets
      len += 6 * ack.received_info.missing_packets.size();
      len += 6;  // least packet sequence number awaiting an ack
      break;
    }
    case CONGESTION_FEEDBACK_FRAME: {
      const QuicCongestionFeedbackFrame& congestion_feedback =
          *frame.congestion_feedback_frame;
      len += 1;  // congestion feedback type

      switch (congestion_feedback.type) {
        case kInterArrival: {
          const CongestionFeedbackMessageInterArrival& inter_arrival =
              congestion_feedback.inter_arrival;
          len += 2;
          len += 1;  // num received packets
          if (inter_arrival.received_packet_times.size() > 0) {
            len += 6;  // smallest received
            len += 8;  // time
            // 2 bytes per sequence number delta plus 4 bytes per delta time.
            len += 6 * (inter_arrival.received_packet_times.size() - 1);
          }
          break;
        }
        case kFixRate:
          len += 4;
          break;
        case kTCP:
          len += 4;
          break;
        default:
          set_detailed_error("Illegal feedback type.");
          DLOG(INFO) << "Illegal feedback type: " << congestion_feedback.type;
          break;
      }
      break;
    }
    case RST_STREAM_FRAME:
      len += 4;  // stream id
      len += 8;  // offset
      len += 4;  // error code
      len += 2;  // error details size
      len += frame.rst_stream_frame->error_details.size();
      break;
    case CONNECTION_CLOSE_FRAME:
      len += 4;  // error code
      len += 2;  // error details size
      len += frame.connection_close_frame->error_details.size();
      len += ComputeFramePayloadLength(
          QuicFrame(&frame.connection_close_frame->ack_frame));
      break;
    default:
      set_detailed_error("Illegal frame type.");
      DLOG(INFO) << "Illegal frame type: " << frame.type;
      break;
  }
  return len;
}

// static
bool QuicFramer::AppendPacketSequenceNumber(
    QuicPacketSequenceNumber packet_sequence_number,
    QuicDataWriter* writer) {
  // Ensure the entire sequence number can be written.
  if (writer->capacity() - writer->length() < kSequenceNumberSize) {
    return false;
  }
  return writer->WriteUInt48(packet_sequence_number & kSequenceNumberMask);
}

bool QuicFramer::AppendStreamFramePayload(
    const QuicStreamFrame& frame,
    QuicDataWriter* writer) {
  if (!writer->WriteUInt32(frame.stream_id)) {
    return false;
  }
  if (!writer->WriteUInt8(frame.fin)) {
    return false;
  }
  if (!writer->WriteUInt64(frame.offset)) {
    return false;
  }
  if (!writer->WriteUInt16(frame.data.size())) {
    return false;
  }
  if (!writer->WriteBytes(frame.data.data(),
                           frame.data.size())) {
    return false;
  }
  return true;
}

QuicPacketSequenceNumber QuicFramer::CalculateLargestObserved(
    const SequenceSet& missing_packets,
    SequenceSet::const_iterator largest_written) {
  SequenceSet::const_iterator it = largest_written;
  QuicPacketSequenceNumber previous_missing = *it;
  ++it;

  // See if the next thing is a gap in the missing packets: if it's a
  // non-missing packet we can return it.
  if (it != missing_packets.end() && previous_missing + 1 != *it) {
    return *it - 1;
  }

  // Otherwise return the largest missing packet, as indirectly observed.
  return *largest_written;
}

// TODO(ianswett): Use varints or another more compact approach for all deltas.
bool QuicFramer::AppendAckFramePayload(
    const QuicAckFrame& frame,
    QuicDataWriter* writer) {
  if (!AppendPacketSequenceNumber(frame.sent_info.least_unacked, writer)) {
    return false;
  }

  size_t largest_observed_offset = writer->length();
  if (!AppendPacketSequenceNumber(frame.received_info.largest_observed,
                                  writer)) {
    return false;
  }

  // We don't check for overflowing uint8 here, because we only can fit 192 acks
  // per packet, so if we overflow we will be truncated.
  uint8 num_missing_packets = frame.received_info.missing_packets.size();
  size_t num_missing_packets_offset = writer->length();
  if (!writer->WriteBytes(&num_missing_packets, 1)) {
    return false;
  }

  SequenceSet::const_iterator it = frame.received_info.missing_packets.begin();
  int num_missing_packets_written = 0;
  for (; it != frame.received_info.missing_packets.end(); ++it) {
    if (!AppendPacketSequenceNumber(*it, writer)) {
      // We are truncating.  Overwrite largest_observed.
      QuicPacketSequenceNumber largest_observed =
          CalculateLargestObserved(frame.received_info.missing_packets, --it);
      writer->WriteUInt48ToOffset(largest_observed & kSequenceNumberMask,
                                  largest_observed_offset);
      writer->WriteUInt8ToOffset(num_missing_packets_written,
                                 num_missing_packets_offset);
      return true;
    }
    ++num_missing_packets_written;
    DCHECK_GE(numeric_limits<uint8>::max(), num_missing_packets_written);
  }

  return true;
}

bool QuicFramer::AppendQuicCongestionFeedbackFramePayload(
    const QuicCongestionFeedbackFrame& frame,
    QuicDataWriter* writer) {
  if (!writer->WriteBytes(&frame.type, 1)) {
    return false;
  }

  switch (frame.type) {
    case kInterArrival: {
      const CongestionFeedbackMessageInterArrival& inter_arrival =
          frame.inter_arrival;
      if (!writer->WriteUInt16(
              inter_arrival.accumulated_number_of_lost_packets)) {
        return false;
      }
      DCHECK_GE(numeric_limits<uint8>::max(),
                inter_arrival.received_packet_times.size());
      if (inter_arrival.received_packet_times.size() >
          numeric_limits<uint8>::max()) {
        return false;
      }
      // TODO(ianswett): Make num_received_packets a varint.
      uint8 num_received_packets =
          inter_arrival.received_packet_times.size();
      if (!writer->WriteBytes(&num_received_packets, 1)) {
        return false;
      }
      if (num_received_packets > 0) {
        TimeMap::const_iterator it =
            inter_arrival.received_packet_times.begin();

        QuicPacketSequenceNumber lowest_sequence = it->first;
        if (!AppendPacketSequenceNumber(lowest_sequence, writer)) {
          return false;
        }

        QuicTime lowest_time = it->second;
        // TODO(ianswett): Use time deltas from the connection's first received
        // packet.
        if (!writer->WriteUInt64(lowest_time.ToMicroseconds())) {
          return false;
        }

        for (++it; it != inter_arrival.received_packet_times.end(); ++it) {
          QuicPacketSequenceNumber sequence_delta = it->first - lowest_sequence;
          DCHECK_GE(numeric_limits<uint16>::max(), sequence_delta);
          if (sequence_delta > numeric_limits<uint16>::max()) {
            return false;
          }
          if (!writer->WriteUInt16(static_cast<uint16>(sequence_delta))) {
            return false;
          }

          int32 time_delta_us =
              it->second.Subtract(lowest_time).ToMicroseconds();
          if (!writer->WriteBytes(&time_delta_us, sizeof(time_delta_us))) {
            return false;
          }
        }
      }
      break;
    }
    case kFixRate: {
      const CongestionFeedbackMessageFixRate& fix_rate =
          frame.fix_rate;
      if (!writer->WriteUInt32(fix_rate.bitrate.ToBytesPerSecond())) {
        return false;
      }
      break;
    }
    case kTCP: {
      const CongestionFeedbackMessageTCP& tcp = frame.tcp;
      DCHECK_LE(tcp.receive_window, 1u << 20);
      // Simple bit packing, don't send the 4 least significant bits.
      uint16 receive_window = static_cast<uint16>(tcp.receive_window >> 4);
      if (!writer->WriteUInt16(tcp.accumulated_number_of_lost_packets)) {
        return false;
      }
      if (!writer->WriteUInt16(receive_window)) {
        return false;
      }
      break;
    }
    default:
      return false;
  }

  return true;
}

bool QuicFramer::AppendRstStreamFramePayload(
        const QuicRstStreamFrame& frame,
        QuicDataWriter* writer) {
  if (!writer->WriteUInt32(frame.stream_id)) {
    return false;
  }
  if (!writer->WriteUInt64(frame.offset)) {
    return false;
  }

  uint32 error_code = static_cast<uint32>(frame.error_code);
  if (!writer->WriteUInt32(error_code)) {
    return false;
  }

  if (!writer->WriteStringPiece16(frame.error_details)) {
    return false;
  }
  return true;
}

bool QuicFramer::AppendConnectionCloseFramePayload(
    const QuicConnectionCloseFrame& frame,
    QuicDataWriter* writer) {
  uint32 error_code = static_cast<uint32>(frame.error_code);
  if (!writer->WriteUInt32(error_code)) {
    return false;
  }
  if (!writer->WriteStringPiece16(frame.error_details)) {
    return false;
  }
  AppendAckFramePayload(frame.ack_frame, writer);
  return true;
}

bool QuicFramer::RaiseError(QuicErrorCode error) {
  DLOG(INFO) << detailed_error_;
  set_error(error);
  visitor_->OnError(this);
  reader_.reset(NULL);
  return false;
}

}  // namespace net