1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/quic_utils.h"
#include <ctype.h>
#include <algorithm>
#include "base/logging.h"
#include "base/port.h"
#include "base/strings/stringprintf.h"
#include "base/strings/string_number_conversions.h"
using base::StringPiece;
using std::string;
namespace net {
// static
uint64 QuicUtils::FNV1a_64_Hash(const char* data, int len) {
static const uint64 kOffset = GG_UINT64_C(14695981039346656037);
static const uint64 kPrime = GG_UINT64_C(1099511628211);
const uint8* octets = reinterpret_cast<const uint8*>(data);
uint64 hash = kOffset;
for (int i = 0; i < len; ++i) {
hash = hash ^ octets[i];
hash = hash * kPrime;
}
return hash;
}
// static
uint128 QuicUtils::FNV1a_128_Hash(const char* data, int len) {
// The following two constants are defined as part of the hash algorithm.
// see http://www.isthe.com/chongo/tech/comp/fnv/
// 309485009821345068724781371
const uint128 kPrime(16777216, 315);
// 144066263297769815596495629667062367629
const uint128 kOffset(GG_UINT64_C(7809847782465536322),
GG_UINT64_C(7113472399480571277));
const uint8* octets = reinterpret_cast<const uint8*>(data);
uint128 hash = kOffset;
for (int i = 0; i < len; ++i) {
hash = hash ^ uint128(0, octets[i]);
hash = hash * kPrime;
}
return hash;
}
// static
bool QuicUtils::FindMutualTag(const QuicTagVector& our_tags_vector,
const QuicTag* their_tags,
size_t num_their_tags,
Priority priority,
QuicTag* out_result,
size_t* out_index) {
if (our_tags_vector.empty()) {
return false;
}
const size_t num_our_tags = our_tags_vector.size();
const QuicTag* our_tags = &our_tags_vector[0];
size_t num_priority_tags, num_inferior_tags;
const QuicTag* priority_tags;
const QuicTag* inferior_tags;
if (priority == LOCAL_PRIORITY) {
num_priority_tags = num_our_tags;
priority_tags = our_tags;
num_inferior_tags = num_their_tags;
inferior_tags = their_tags;
} else {
num_priority_tags = num_their_tags;
priority_tags = their_tags;
num_inferior_tags = num_our_tags;
inferior_tags = our_tags;
}
for (size_t i = 0; i < num_priority_tags; i++) {
for (size_t j = 0; j < num_inferior_tags; j++) {
if (priority_tags[i] == inferior_tags[j]) {
*out_result = priority_tags[i];
if (out_index) {
if (priority == LOCAL_PRIORITY) {
*out_index = j;
} else {
*out_index = i;
}
}
return true;
}
}
}
return false;
}
// static
void QuicUtils::SerializeUint128(uint128 v, uint8* out) {
const uint64 lo = Uint128Low64(v);
const uint64 hi = Uint128High64(v);
// This assumes that the system is little-endian.
memcpy(out, &lo, sizeof(lo));
memcpy(out + sizeof(lo), &hi, sizeof(hi));
}
#define RETURN_STRING_LITERAL(x) \
case x: \
return #x;
// static
const char* QuicUtils::StreamErrorToString(QuicRstStreamErrorCode error) {
switch (error) {
RETURN_STRING_LITERAL(QUIC_STREAM_NO_ERROR);
RETURN_STRING_LITERAL(QUIC_STREAM_CONNECTION_ERROR);
RETURN_STRING_LITERAL(QUIC_ERROR_PROCESSING_STREAM);
RETURN_STRING_LITERAL(QUIC_MULTIPLE_TERMINATION_OFFSETS);
RETURN_STRING_LITERAL(QUIC_BAD_APPLICATION_PAYLOAD);
RETURN_STRING_LITERAL(QUIC_STREAM_PEER_GOING_AWAY);
RETURN_STRING_LITERAL(QUIC_STREAM_CANCELLED);
RETURN_STRING_LITERAL(QUIC_STREAM_LAST_ERROR);
}
// Return a default value so that we return this when |error| doesn't match
// any of the QuicRstStreamErrorCodes. This can happen when the RstStream
// frame sent by the peer (attacker) has invalid error code.
return "INVALID_RST_STREAM_ERROR_CODE";
}
// static
const char* QuicUtils::ErrorToString(QuicErrorCode error) {
switch (error) {
RETURN_STRING_LITERAL(QUIC_NO_ERROR);
RETURN_STRING_LITERAL(QUIC_INTERNAL_ERROR);
RETURN_STRING_LITERAL(QUIC_STREAM_DATA_AFTER_TERMINATION);
RETURN_STRING_LITERAL(QUIC_INVALID_PACKET_HEADER);
RETURN_STRING_LITERAL(QUIC_INVALID_FRAME_DATA);
RETURN_STRING_LITERAL(QUIC_MISSING_PAYLOAD);
RETURN_STRING_LITERAL(QUIC_INVALID_FEC_DATA);
RETURN_STRING_LITERAL(QUIC_INVALID_STREAM_DATA);
RETURN_STRING_LITERAL(QUIC_INVALID_RST_STREAM_DATA);
RETURN_STRING_LITERAL(QUIC_INVALID_CONNECTION_CLOSE_DATA);
RETURN_STRING_LITERAL(QUIC_INVALID_GOAWAY_DATA);
RETURN_STRING_LITERAL(QUIC_INVALID_ACK_DATA);
RETURN_STRING_LITERAL(QUIC_INVALID_CONGESTION_FEEDBACK_DATA);
RETURN_STRING_LITERAL(QUIC_INVALID_VERSION_NEGOTIATION_PACKET);
RETURN_STRING_LITERAL(QUIC_INVALID_PUBLIC_RST_PACKET);
RETURN_STRING_LITERAL(QUIC_DECRYPTION_FAILURE);
RETURN_STRING_LITERAL(QUIC_ENCRYPTION_FAILURE);
RETURN_STRING_LITERAL(QUIC_PACKET_TOO_LARGE);
RETURN_STRING_LITERAL(QUIC_PACKET_FOR_NONEXISTENT_STREAM);
RETURN_STRING_LITERAL(QUIC_PEER_GOING_AWAY);
RETURN_STRING_LITERAL(QUIC_HANDSHAKE_FAILED);
RETURN_STRING_LITERAL(QUIC_CRYPTO_TAGS_OUT_OF_ORDER);
RETURN_STRING_LITERAL(QUIC_CRYPTO_TOO_MANY_ENTRIES);
RETURN_STRING_LITERAL(QUIC_CRYPTO_TOO_MANY_REJECTS);
RETURN_STRING_LITERAL(QUIC_CRYPTO_INVALID_VALUE_LENGTH)
RETURN_STRING_LITERAL(QUIC_CRYPTO_MESSAGE_AFTER_HANDSHAKE_COMPLETE);
RETURN_STRING_LITERAL(QUIC_CRYPTO_INTERNAL_ERROR);
RETURN_STRING_LITERAL(QUIC_CRYPTO_VERSION_NOT_SUPPORTED);
RETURN_STRING_LITERAL(QUIC_CRYPTO_NO_SUPPORT);
RETURN_STRING_LITERAL(QUIC_INVALID_CRYPTO_MESSAGE_TYPE);
RETURN_STRING_LITERAL(QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER);
RETURN_STRING_LITERAL(QUIC_CRYPTO_MESSAGE_PARAMETER_NOT_FOUND);
RETURN_STRING_LITERAL(QUIC_CRYPTO_MESSAGE_PARAMETER_NO_OVERLAP);
RETURN_STRING_LITERAL(QUIC_CRYPTO_MESSAGE_INDEX_NOT_FOUND);
RETURN_STRING_LITERAL(QUIC_INVALID_STREAM_ID);
RETURN_STRING_LITERAL(QUIC_INVALID_PRIORITY);
RETURN_STRING_LITERAL(QUIC_TOO_MANY_OPEN_STREAMS);
RETURN_STRING_LITERAL(QUIC_PUBLIC_RESET);
RETURN_STRING_LITERAL(QUIC_INVALID_VERSION);
RETURN_STRING_LITERAL(QUIC_STREAM_RST_BEFORE_HEADERS_DECOMPRESSED);
RETURN_STRING_LITERAL(QUIC_INVALID_HEADER_ID);
RETURN_STRING_LITERAL(QUIC_INVALID_NEGOTIATED_VALUE);
RETURN_STRING_LITERAL(QUIC_DECOMPRESSION_FAILURE);
RETURN_STRING_LITERAL(QUIC_CONNECTION_TIMED_OUT);
RETURN_STRING_LITERAL(QUIC_ERROR_MIGRATING_ADDRESS);
RETURN_STRING_LITERAL(QUIC_PACKET_WRITE_ERROR);
RETURN_STRING_LITERAL(QUIC_PACKET_READ_ERROR);
RETURN_STRING_LITERAL(QUIC_INVALID_STREAM_FRAME);
RETURN_STRING_LITERAL(QUIC_PROOF_INVALID);
RETURN_STRING_LITERAL(QUIC_CRYPTO_DUPLICATE_TAG);
RETURN_STRING_LITERAL(QUIC_CRYPTO_ENCRYPTION_LEVEL_INCORRECT);
RETURN_STRING_LITERAL(QUIC_CRYPTO_SERVER_CONFIG_EXPIRED);
RETURN_STRING_LITERAL(QUIC_LAST_ERROR);
// Intentionally have no default case, so we'll break the build
// if we add errors and don't put them here.
}
// Return a default value so that we return this when |error| doesn't match
// any of the QuicErrorCodes. This can happen when the ConnectionClose
// frame sent by the peer (attacker) has invalid error code.
return "INVALID_ERROR_CODE";
}
// static
const char* QuicUtils::EncryptionLevelToString(EncryptionLevel level) {
switch (level) {
RETURN_STRING_LITERAL(ENCRYPTION_NONE);
RETURN_STRING_LITERAL(ENCRYPTION_INITIAL);
RETURN_STRING_LITERAL(ENCRYPTION_FORWARD_SECURE);
RETURN_STRING_LITERAL(NUM_ENCRYPTION_LEVELS);
}
return "INVALID_ENCRYPTION_LEVEL";
}
// static
string QuicUtils::TagToString(QuicTag tag) {
char chars[4];
bool ascii = true;
const QuicTag orig_tag = tag;
for (size_t i = 0; i < sizeof(chars); i++) {
chars[i] = tag;
if (chars[i] == 0 && i == 3) {
chars[i] = ' ';
}
if (!isprint(static_cast<unsigned char>(chars[i]))) {
ascii = false;
break;
}
tag >>= 8;
}
if (ascii) {
return string(chars, sizeof(chars));
}
return base::UintToString(orig_tag);
}
// static
string QuicUtils::StringToHexASCIIDump(StringPiece in_buffer) {
int offset = 0;
const int kBytesPerLine = 16; // Max bytes dumped per line
const char* buf = in_buffer.data();
int bytes_remaining = in_buffer.size();
string s; // our output
const char* p = buf;
while (bytes_remaining > 0) {
const int line_bytes = std::min(bytes_remaining, kBytesPerLine);
base::StringAppendF(&s, "0x%04x: ", offset); // Do the line header
for (int i = 0; i < kBytesPerLine; ++i) {
if (i < line_bytes) {
base::StringAppendF(&s, "%02x", static_cast<unsigned char>(p[i]));
} else {
s += " "; // two-space filler instead of two-space hex digits
}
if (i % 2) s += ' ';
}
s += ' ';
for (int i = 0; i < line_bytes; ++i) { // Do the ASCII dump
s+= (p[i] > 32 && p[i] < 127) ? p[i] : '.';
}
bytes_remaining -= line_bytes;
offset += line_bytes;
p += line_bytes;
s += '\n';
}
return s;
}
} // namespace net
|