summaryrefslogtreecommitdiffstats
path: root/net/quic/reliable_quic_stream.cc
blob: a98e22dd5e60084d865ae648ef539f1c5f0e891d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "net/quic/reliable_quic_stream.h"

#include "base/logging.h"
#include "net/quic/iovector.h"
#include "net/quic/quic_flow_controller.h"
#include "net/quic/quic_session.h"
#include "net/quic/quic_write_blocked_list.h"

using base::StringPiece;
using std::min;

namespace net {

#define ENDPOINT (is_server_ ? "Server: " : " Client: ")

namespace {

struct iovec MakeIovec(StringPiece data) {
  struct iovec iov = {const_cast<char*>(data.data()),
                      static_cast<size_t>(data.size())};
  return iov;
}

}  // namespace

// Wrapper that aggregates OnAckNotifications for packets sent using
// WriteOrBufferData and delivers them to the original
// QuicAckNotifier::DelegateInterface after all bytes written using
// WriteOrBufferData are acked.  This level of indirection is
// necessary because the delegate interface provides no mechanism that
// WriteOrBufferData can use to inform it that the write required
// multiple WritevData calls or that only part of the data has been
// sent out by the time ACKs start arriving.
class ReliableQuicStream::ProxyAckNotifierDelegate
    : public QuicAckNotifier::DelegateInterface {
 public:
  explicit ProxyAckNotifierDelegate(DelegateInterface* delegate)
      : delegate_(delegate),
        pending_acks_(0),
        wrote_last_data_(false),
        num_original_packets_(0),
        num_original_bytes_(0),
        num_retransmitted_packets_(0),
        num_retransmitted_bytes_(0) {
  }

  virtual void OnAckNotification(int num_original_packets,
                                 int num_original_bytes,
                                 int num_retransmitted_packets,
                                 int num_retransmitted_bytes,
                                 QuicTime::Delta delta_largest_observed)
      OVERRIDE {
    DCHECK_LT(0, pending_acks_);
    --pending_acks_;
    num_original_packets_ += num_original_packets;
    num_original_bytes_ += num_original_bytes;
    num_retransmitted_packets_ += num_retransmitted_packets;
    num_retransmitted_bytes_ += num_retransmitted_bytes;

    if (wrote_last_data_ && pending_acks_ == 0) {
      delegate_->OnAckNotification(num_original_packets_,
                                   num_original_bytes_,
                                   num_retransmitted_packets_,
                                   num_retransmitted_bytes_,
                                   delta_largest_observed);
    }
  }

  void WroteData(bool last_data) {
    DCHECK(!wrote_last_data_);
    ++pending_acks_;
    wrote_last_data_ = last_data;
  }

 protected:
  // Delegates are ref counted.
  virtual ~ProxyAckNotifierDelegate() OVERRIDE {
  }

 private:
  // Original delegate.  delegate_->OnAckNotification will be called when:
  //   wrote_last_data_ == true and pending_acks_ == 0
  scoped_refptr<DelegateInterface> delegate_;

  // Number of outstanding acks.
  int pending_acks_;

  // True if no pending writes remain.
  bool wrote_last_data_;

  // Accumulators.
  int num_original_packets_;
  int num_original_bytes_;
  int num_retransmitted_packets_;
  int num_retransmitted_bytes_;

  DISALLOW_COPY_AND_ASSIGN(ProxyAckNotifierDelegate);
};

ReliableQuicStream::PendingData::PendingData(
    string data_in, scoped_refptr<ProxyAckNotifierDelegate> delegate_in)
    : data(data_in), delegate(delegate_in) {
}

ReliableQuicStream::PendingData::~PendingData() {
}

ReliableQuicStream::ReliableQuicStream(QuicStreamId id, QuicSession* session)
    : sequencer_(this),
      id_(id),
      session_(session),
      stream_bytes_read_(0),
      stream_bytes_written_(0),
      stream_error_(QUIC_STREAM_NO_ERROR),
      connection_error_(QUIC_NO_ERROR),
      read_side_closed_(false),
      write_side_closed_(false),
      fin_buffered_(false),
      fin_sent_(false),
      fin_received_(false),
      rst_sent_(false),
      rst_received_(false),
      fec_policy_(FEC_PROTECT_OPTIONAL),
      is_server_(session_->is_server()),
      flow_controller_(
          session_->connection(),
          id_,
          is_server_,
          session_->config()->HasReceivedInitialFlowControlWindowBytes() ?
              session_->config()->ReceivedInitialFlowControlWindowBytes() :
              kDefaultFlowControlSendWindow,
          session_->config()->GetInitialFlowControlWindowToSend(),
          session_->config()->GetInitialFlowControlWindowToSend()),
      connection_flow_controller_(session_->flow_controller()) {
}

ReliableQuicStream::~ReliableQuicStream() {
}

bool ReliableQuicStream::OnStreamFrame(const QuicStreamFrame& frame) {
  if (read_side_closed_) {
    DVLOG(1) << ENDPOINT << "Ignoring frame " << frame.stream_id;
    // We don't want to be reading: blackhole the data.
    return true;
  }

  if (frame.stream_id != id_) {
    LOG(ERROR) << "Error!";
    return false;
  }

  if (frame.fin) {
    fin_received_ = true;
  }

  // This count include duplicate data received.
  size_t frame_payload_size = frame.data.TotalBufferSize();
  stream_bytes_read_ += frame_payload_size;

  // Flow control is interested in tracking highest received offset.
  if (MaybeIncreaseHighestReceivedOffset(frame.offset + frame_payload_size)) {
    // As the highest received offset has changed, we should check to see if
    // this is a violation of flow control.
    if (flow_controller_.FlowControlViolation() ||
        connection_flow_controller_->FlowControlViolation()) {
      session_->connection()->SendConnectionClose(
          QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA);
      return false;
    }
  }

  return sequencer_.OnStreamFrame(frame);
}

int ReliableQuicStream::num_frames_received() const {
  return sequencer_.num_frames_received();
}

int ReliableQuicStream::num_duplicate_frames_received() const {
  return sequencer_.num_duplicate_frames_received();
}

void ReliableQuicStream::OnStreamReset(const QuicRstStreamFrame& frame) {
  rst_received_ = true;
  MaybeIncreaseHighestReceivedOffset(frame.byte_offset);

  stream_error_ = frame.error_code;
  CloseWriteSide();
  CloseReadSide();
}

void ReliableQuicStream::OnConnectionClosed(QuicErrorCode error,
                                            bool from_peer) {
  if (read_side_closed_ && write_side_closed_) {
    return;
  }
  if (error != QUIC_NO_ERROR) {
    stream_error_ = QUIC_STREAM_CONNECTION_ERROR;
    connection_error_ = error;
  }

  CloseWriteSide();
  CloseReadSide();
}

void ReliableQuicStream::OnFinRead() {
  DCHECK(sequencer_.IsClosed());
  CloseReadSide();
}

void ReliableQuicStream::Reset(QuicRstStreamErrorCode error) {
  DCHECK_NE(QUIC_STREAM_NO_ERROR, error);
  stream_error_ = error;
  // Sending a RstStream results in calling CloseStream.
  session()->SendRstStream(id(), error, stream_bytes_written_);
  rst_sent_ = true;
}

void ReliableQuicStream::CloseConnection(QuicErrorCode error) {
  session()->connection()->SendConnectionClose(error);
}

void ReliableQuicStream::CloseConnectionWithDetails(QuicErrorCode error,
                                                    const string& details) {
  session()->connection()->SendConnectionCloseWithDetails(error, details);
}

QuicVersion ReliableQuicStream::version() const {
  return session()->connection()->version();
}

void ReliableQuicStream::WriteOrBufferData(
    StringPiece data,
    bool fin,
    QuicAckNotifier::DelegateInterface* ack_notifier_delegate) {
  if (data.empty() && !fin) {
    LOG(DFATAL) << "data.empty() && !fin";
    return;
  }

  if (fin_buffered_) {
    LOG(DFATAL) << "Fin already buffered";
    return;
  }

  scoped_refptr<ProxyAckNotifierDelegate> proxy_delegate;
  if (ack_notifier_delegate != NULL) {
    proxy_delegate = new ProxyAckNotifierDelegate(ack_notifier_delegate);
  }

  QuicConsumedData consumed_data(0, false);
  fin_buffered_ = fin;

  if (queued_data_.empty()) {
    struct iovec iov(MakeIovec(data));
    consumed_data = WritevData(&iov, 1, fin, proxy_delegate.get());
    DCHECK_LE(consumed_data.bytes_consumed, data.length());
  }

  bool write_completed;
  // If there's unconsumed data or an unconsumed fin, queue it.
  if (consumed_data.bytes_consumed < data.length() ||
      (fin && !consumed_data.fin_consumed)) {
    StringPiece remainder(data.substr(consumed_data.bytes_consumed));
    queued_data_.push_back(PendingData(remainder.as_string(), proxy_delegate));
    write_completed = false;
  } else {
    write_completed = true;
  }

  if ((proxy_delegate.get() != NULL) &&
      (consumed_data.bytes_consumed > 0 || consumed_data.fin_consumed)) {
    proxy_delegate->WroteData(write_completed);
  }
}

void ReliableQuicStream::OnCanWrite() {
  bool fin = false;
  while (!queued_data_.empty()) {
    PendingData* pending_data = &queued_data_.front();
    ProxyAckNotifierDelegate* delegate = pending_data->delegate.get();
    if (queued_data_.size() == 1 && fin_buffered_) {
      fin = true;
    }
    struct iovec iov(MakeIovec(pending_data->data));
    QuicConsumedData consumed_data = WritevData(&iov, 1, fin, delegate);
    if (consumed_data.bytes_consumed == pending_data->data.size() &&
        fin == consumed_data.fin_consumed) {
      queued_data_.pop_front();
      if (delegate != NULL) {
        delegate->WroteData(true);
      }
    } else {
      if (consumed_data.bytes_consumed > 0) {
        pending_data->data.erase(0, consumed_data.bytes_consumed);
        if (delegate != NULL) {
          delegate->WroteData(false);
        }
      }
      break;
    }
  }
}

void ReliableQuicStream::MaybeSendBlocked() {
  flow_controller_.MaybeSendBlocked();
  connection_flow_controller_->MaybeSendBlocked();
  // If we are connection level flow control blocked, then add the stream
  // to the write blocked list. It will be given a chance to write when a
  // connection level WINDOW_UPDATE arrives.
  if (connection_flow_controller_->IsBlocked() &&
      !flow_controller_.IsBlocked()) {
    session_->MarkWriteBlocked(id(), EffectivePriority());
  }
}

QuicConsumedData ReliableQuicStream::WritevData(
    const struct iovec* iov,
    int iov_count,
    bool fin,
    QuicAckNotifier::DelegateInterface* ack_notifier_delegate) {
  if (write_side_closed_) {
    DLOG(ERROR) << ENDPOINT << "Attempt to write when the write side is closed";
    return QuicConsumedData(0, false);
  }

  // How much data we want to write.
  size_t write_length = TotalIovecLength(iov, iov_count);

  // A FIN with zero data payload should not be flow control blocked.
  bool fin_with_zero_data = (fin && write_length == 0);

  if (flow_controller_.IsEnabled()) {
    // How much data we are allowed to write from flow control.
    uint64 send_window = flow_controller_.SendWindowSize();
    if (connection_flow_controller_->IsEnabled()) {
      send_window =
          min(send_window, connection_flow_controller_->SendWindowSize());
    }

    if (send_window == 0 && !fin_with_zero_data) {
      // Quick return if we can't send anything.
      MaybeSendBlocked();
      return QuicConsumedData(0, false);
    }

    if (write_length > send_window) {
      // Don't send the FIN if we aren't going to send all the data.
      fin = false;

      // Writing more data would be a violation of flow control.
      write_length = send_window;
    }
  }

  // Fill an IOVector with bytes from the iovec.
  IOVector data;
  data.AppendIovecAtMostBytes(iov, iov_count, write_length);

  QuicConsumedData consumed_data = session()->WritevData(
      id(), data, stream_bytes_written_, fin, GetFecProtection(),
      ack_notifier_delegate);
  stream_bytes_written_ += consumed_data.bytes_consumed;

  AddBytesSent(consumed_data.bytes_consumed);

  if (consumed_data.bytes_consumed == write_length) {
    if (!fin_with_zero_data) {
      MaybeSendBlocked();
    }
    if (fin && consumed_data.fin_consumed) {
      fin_sent_ = true;
      CloseWriteSide();
    } else if (fin && !consumed_data.fin_consumed) {
      session_->MarkWriteBlocked(id(), EffectivePriority());
    }
  } else {
    session_->MarkWriteBlocked(id(), EffectivePriority());
  }
  return consumed_data;
}

FecProtection ReliableQuicStream::GetFecProtection() {
  return fec_policy_ == FEC_PROTECT_ALWAYS ? MUST_FEC_PROTECT : MAY_FEC_PROTECT;
}

void ReliableQuicStream::CloseReadSide() {
  if (read_side_closed_) {
    return;
  }
  DVLOG(1) << ENDPOINT << "Done reading from stream " << id();

  read_side_closed_ = true;
  if (write_side_closed_) {
    DVLOG(1) << ENDPOINT << "Closing stream: " << id();
    session_->CloseStream(id());
  }
}

void ReliableQuicStream::CloseWriteSide() {
  if (write_side_closed_) {
    return;
  }
  DVLOG(1) << ENDPOINT << "Done writing to stream " << id();

  write_side_closed_ = true;
  if (read_side_closed_) {
    DVLOG(1) << ENDPOINT << "Closing stream: " << id();
    session_->CloseStream(id());
  }
}

bool ReliableQuicStream::HasBufferedData() const {
  return !queued_data_.empty();
}

void ReliableQuicStream::OnClose() {
  CloseReadSide();
  CloseWriteSide();

  if (!fin_sent_ && !rst_sent_) {
    // For flow control accounting, we must tell the peer how many bytes we have
    // written on this stream before termination. Done here if needed, using a
    // RST frame.
    DVLOG(1) << ENDPOINT << "Sending RST in OnClose: " << id();
    session_->SendRstStream(id(), QUIC_RST_FLOW_CONTROL_ACCOUNTING,
                            stream_bytes_written_);
    rst_sent_ = true;
  }

  // We are closing the stream and will not process any further incoming bytes.
  // As there may be more bytes in flight and we need to ensure that both
  // endpoints have the same connection level flow control state, mark all
  // unreceived or buffered bytes as consumed.
  uint64 bytes_to_consume = flow_controller_.highest_received_byte_offset() -
      flow_controller_.bytes_consumed();
  AddBytesConsumed(bytes_to_consume);
}

void ReliableQuicStream::OnWindowUpdateFrame(
    const QuicWindowUpdateFrame& frame) {
  if (!flow_controller_.IsEnabled()) {
    DLOG(DFATAL) << "Flow control not enabled! " << version();
    return;
  }

  if (flow_controller_.UpdateSendWindowOffset(frame.byte_offset)) {
    // We can write again!
    // TODO(rjshade): This does not respect priorities (e.g. multiple
    //                outstanding POSTs are unblocked on arrival of
    //                SHLO with initial window).
    // As long as the connection is not flow control blocked, we can write!
    OnCanWrite();
  }
}

bool ReliableQuicStream::MaybeIncreaseHighestReceivedOffset(uint64 new_offset) {
  if (flow_controller_.IsEnabled()) {
    uint64 increment =
        new_offset - flow_controller_.highest_received_byte_offset();
    if (flow_controller_.UpdateHighestReceivedOffset(new_offset)) {
      // If |new_offset| increased the stream flow controller's highest received
      // offset, then we need to increase the connection flow controller's value
      // by the incremental difference.
      connection_flow_controller_->UpdateHighestReceivedOffset(
          connection_flow_controller_->highest_received_byte_offset() +
          increment);
      return true;
    }
  }
  return false;
}

void ReliableQuicStream::AddBytesSent(uint64 bytes) {
  if (flow_controller_.IsEnabled()) {
    flow_controller_.AddBytesSent(bytes);
    connection_flow_controller_->AddBytesSent(bytes);
  }
}

void ReliableQuicStream::AddBytesConsumed(uint64 bytes) {
  if (flow_controller_.IsEnabled()) {
    // Only adjust stream level flow controller if we are still reading.
    if (!read_side_closed_) {
      flow_controller_.AddBytesConsumed(bytes);
    }

    connection_flow_controller_->AddBytesConsumed(bytes);
  }
}

bool ReliableQuicStream::IsFlowControlBlocked() {
  return flow_controller_.IsBlocked() ||
         connection_flow_controller_->IsBlocked();
}

}  // namespace net