1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|
<!--
Copyright 2009, Google Inc.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-->
<!--
O3D Julia Set
This sample draws an animated julia set in real time using
the pixel shader for the computation.
-->
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html style="width: 100%; height: 100%;">
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<title>
Julia Set Pixel Shader
</title>
<script type="text/javascript" src="o3djs/base.js"></script>
<script type="text/javascript">
o3djs.require('o3djs.util');
o3djs.require('o3djs.math');
o3djs.require('o3djs.rendergraph');
o3djs.require('o3djs.primitives');
// Events
// Run the init() function once the page has finished loading.
// unload() when the page is unloaded.
window.onload = init;
window.onunload = unload;
// global variables
var g_o3d;
var g_math;
var g_client;
var g_o3dElement;
var g_viewInfo;
var g_pack;
var g_o3dWidth = -1;
var g_o3dHeight = -1;
var g_clock = 0.0;
var g_timeMult = 1;
var g_finished = false; // for selenium testing
var g_seedParam;
/**
* Creates the client area.
*/
function init() {
o3djs.util.makeClients(initStep2);
}
/**
* Initializes o3d, loads the effect, and creates the square.
* @param {Array} clientElements Array of o3d object elements.
*/
function initStep2(clientElements) {
// Initialize global variables and libraries.
g_o3dElement = clientElements[0];
g_o3d = g_o3dElement.o3d;
g_math = o3djs.math;
g_client = g_o3dElement.client;
// Create a g_pack to manage our resources/assets
g_pack = g_client.createPack();
// Create the render graph for a view.
g_viewInfo = o3djs.rendergraph.createBasicView(
g_pack,
g_client.root,
g_client.renderGraphRoot,
[0, 0, 0, 1]);
// Load shader code from DOM and use it to build the effect.
var effect = g_pack.createObject('Effect');
effect.loadFromFXString(document.getElementById('shader').value);
// Create a Material for the effect.
var myMaterial = g_pack.createObject('Material');
// Apply our effect to this material.
myMaterial.effect = effect;
// Set the material's drawList for opaque objects.
myMaterial.drawList = g_viewInfo.performanceDrawList;
// create the parameters the effect needs to the material.
effect.createUniformParameters(myMaterial);
// Create a square.
var myShape = o3djs.primitives.createPlane(g_pack, myMaterial, 1, 1, 1, 1);
// Initialize effect parameters to something reasonable
g_seedParam = myMaterial.getParam('seed');
g_seedParam.value = [0.2, 0.5];
// Put the camera somewhere where it has a good view of that square.
g_viewInfo.drawContext.view = g_math.matrix4.lookAt(
[0, 1, 0], //eye
[0, 0, 0], //target
[0, 0, -1]); //up
// Generate the projection matrix based
// on the g_o3d plugin size by calling resize().
resize();
// Now attach the square to the root of the transform graph.
g_client.root.addShape(myShape);
g_client.setRenderCallback(onrender);
g_finished = true; // for selenium testing.
}
/**
* Render callback. Walks the seed of the Julia set through
* a parametric path in the complex plane that stays
* in the neighborhood of the Mandelbrot set.
*/
function onrender(render_event) {
g_clock += render_event.elapsedTime * g_timeMult;
var t = 0.1 * g_clock;
var x = 0.6 * Math.cos(3.0 * t) - 0.3;
var y = (0.5 * x + 1.7)*(0.2 * Math.sin(7 * t));
g_seedParam.value = [x, y];
resize();
}
/**
* Generates the projection matrix based on the size of the o3d plugin and
* calculates the view-projection matrix.
*/
function resize() {
var newWidth = g_client.width;
var newHeight = g_client.height;
if (newWidth != g_o3dWidth || newHeight != g_o3dHeight) {
g_o3dWidth = newWidth;
g_o3dHeight = newHeight;
// Determine what the size of the rendered square within the client should
// be in pixels.
var side = g_o3dWidth < g_o3dHeight ?
g_o3dWidth : g_o3dHeight;
// Convert to the region of world space that must be enclosed by the
// orthographic projection.
var worldSize = g_math.divVectorScalar([g_o3dWidth, g_o3dHeight], side);
// Find a projection matrix to transform from world space to screen space.
g_viewInfo.drawContext.projection = g_math.matrix4.orthographic(
-0.5 * worldSize[0], 0.5 * worldSize[0],
-0.5 * worldSize[1], 0.5 * worldSize[1],
0.5, 1.5);
}
}
/**
* Removes any callbacks so they don't get called after the page has unloaded.
*/
function unload() {
if (g_client) {
g_client.cleanup();
}
}
</script>
</head>
<body style="width: 100%; height: 100%;">
<table style="width: 100%; height: 100%;">
<tr>
<td>
<h1>Julia Set</h1>
<p>
This sample draws an animated julia set in real time using
the pixel shader for the computation.
</p>
<table id="container" style="width: 100%; height: 80%;">
<tr>
<td height="100%">
<!-- Start of g_o3d plugin -->
<div id="o3d" style="width: 100%; height: 100%;"></div>
<!-- End of g_o3d plugin -->
</td>
</tr>
</table>
<!-- a simple way to get a multiline string -->
<textarea id="shader" name="shader" cols="80" rows="20"
style="display: none;">
// The 4x4 world view projection matrix.
float4x4 worldViewProjection : WORLDVIEWPROJECTION;
// The seed for the julia set (c in the expression z(n+1) = z(n)^2+c).
float2 seed;
// input parameters for our vertex shader
struct VertexShaderInput {
float4 position : POSITION;
float2 texCoord : TEXCOORD0;
};
// input parameters for our pixel shader
// also the output parameters for our vertex shader
struct PixelShaderInput {
float4 position : POSITION;
float2 texCoord : TEXCOORD0;
};
/**
* vertexShaderMain - Multiplies position by world-view-projection matrix, and
* passes on texture coordinates scaled to put the origin in the center of the
* quad and reveal a nicely sized portion of the plane to show the julia set.
*/
PixelShaderInput vertexShaderMain(VertexShaderInput input) {
PixelShaderInput output;
output.position = mul(input.position, worldViewProjection);
output.texCoord = 4.0 * (input.texCoord - float2(0.5, 0.5));
return output;
}
/**
* pixelShaderMain - Calculates the color of the pixel by iterating on the
* formula z = z*z + seed. After some number of iterations, the magnitude of z
* determines the color.
*/
float4 pixelShaderMain(PixelShaderInput input) : COLOR {
float2 Z = input.texCoord;
// Number of iterations hardcoded here. The more iterations, the crisper the
// image.
for(int i = 0; i < 10; ++i) {
Z = float2(Z.x * Z.x - Z.y * Z.y, 2.0 * Z.x * Z.y) + seed;
// Some graphics cards and some software renderers don't appreciate large
// floating point values, so we clamp to prevent Z from getting that big.
if (i > 7) {
Z = clamp(Z, -25, 25);
}
}
return (1 - length(Z)) * float4(0.5, 1, 2, 1);
}
// Here we tell our effect file *which* functions are
// our vertex and pixel shaders.
// #o3d VertexShaderEntryPoint vertexShaderMain
// #o3d PixelShaderEntryPoint pixelShaderMain
// #o3d MatrixLoadOrder RowMajor
</textarea>
</td>
</tr>
</table>
</body>
</html>
|