1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
|
/*
* Copyright 2009, Google Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// The 4x4 world view projection matrix.
float4x4 worldViewProjection : WorldViewProjection;
float4x4 worldInverseTranspose : WorldInverseTranspose;
float4x4 world : World;
float4x4 viewInverse : ViewInverse;
// whether to use texture
float useTexture;
float3 lightWorldPos;
float4 lightIntensity;
float4 ambientIntensity;
float4 emissive;
float4 ambient;
float4 diffuse;
float4 specular;
float shininess;
sampler2D AmbientSampler;
sampler2D DiffuseSampler;
sampler2D BumpSampler;
// input parameters for our vertex shader
struct VertexShaderInput {
float4 position : POSITION;
float4 normal : NORMAL;
float4 tangent : TANGENT;
float4 binormal : BINORMAL;
float2 texcoord0 : TEXCOORD0;
};
// input parameters for our pixel shader
// also the output parameters for our vertex shader
struct PixelShaderInput {
float4 position : POSITION;
float2 texcoord0 : TEXCOORD0;
float3 normal : TEXCOORD1;
float3 binormal : TEXCOORD2;
float3 tangent : TEXCOORD3;
float3 worldPosition : TEXCOORD4;
};
PixelShaderInput vertexShaderFunction(VertexShaderInput input) {
PixelShaderInput output;
// Transform position into clip space.
output.position = mul(input.position, worldViewProjection);
// Transform the tangent frame into world space.
output.tangent = mul(input.tangent, worldInverseTranspose).xyz;
output.binormal = mul(input.binormal, worldInverseTranspose).xyz;
output.normal = mul(input.normal, worldInverseTranspose).xyz;
// Pass through the texture coordinates.
output.texcoord0 = input.texcoord0;
// Calculate surface position in world space. Used for lighting.
output.worldPosition = mul(input.position, world).xyz;
return output;
}
float4 pixelShaderFunction(PixelShaderInput input): COLOR {
// Construct a transform from tangent space into world space.
float3x3 tangentToWorld = float3x3(input.tangent,
input.binormal,
input.normal);
// Read the tangent space normal from the normal map and remove the bias so
// they are in the range [-0.5,0.5]. There is no need to scale by 2 because
// the vector will soon be normalized.
float3 tangentNormal = tex2D(BumpSampler, input.texcoord0.xy).xyz -
float3(0.5, 0.5, 0.5);
// Transform the normal into world space.
float3 worldNormal = mul(tangentNormal, tangentToWorld);
worldNormal = normalize(worldNormal);
// Read the diffuse and ambient colors.
float4 textureAmbient = float4(1, 1, 1, 1);
float4 textureDiffuse = float4(1, 1, 1, 1);
if (useTexture == 1) {
textureAmbient = tex2D(AmbientSampler, input.texcoord0.xy);
textureDiffuse = tex2D(DiffuseSampler, input.texcoord0.xy);
}
// Apply lighting in world space in case the world transform contains scaling.
float3 surfaceToLight = normalize(lightWorldPos.xyz -
input.worldPosition.xyz);
float3 surfaceToView = normalize(viewInverse[3].xyz - input.worldPosition);
float3 halfVector = normalize(surfaceToLight + surfaceToView);
float4 litResult = lit(dot(worldNormal, surfaceToLight),
dot(worldNormal, halfVector), shininess);
float4 outColor = ambientIntensity * ambient * textureAmbient;
outColor += lightIntensity * (diffuse * textureDiffuse * litResult.y +
specular * litResult.z);
outColor += emissive;
return float4(outColor.rgb, diffuse.a * textureDiffuse.a);
}
// Here we tell our effect file *which* functions are
// our vertex and pixel shaders.
// #o3d VertexShaderEntryPoint vertexShaderFunction
// #o3d PixelShaderEntryPoint pixelShaderFunction
// #o3d MatrixLoadOrder RowMajor
|