summaryrefslogtreecommitdiffstats
path: root/o3d/samples/siteswap/math.js
blob: e5847443ca9942e21c5d60dd7383349e31135f3b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
// @@REWRITE(insert js-copyright)
// @@REWRITE(delete-start)
// Copyright 2009 Google Inc.  All Rights Reserved
// @@REWRITE(delete-end)

/**
 * @fileoverview This file contains all the math for the siteswap animator.  It
 * handles all of the site-swap-related stuff [converting a sequence of integers
 * into a more-useful representation of a pattern, pattern validation, etc.] as
 * well as all the physics used for the simulation.
 */

/**
 * This is a container class that holds the coefficients of an equation
 * describing the motion of an object.
 * The basic equation is:
 *   f(x) := a t^2 + b t + c + d sin (f t) + e cos (f t).
 * However, sometimes we LERP between that function and this one:
 *   g(x) := lA t^2  + lB t + lC
 * lerpRate [so far] is always either 1 [LERP from f to g over 1 beat] or -1,
 * [LERP from g to f over one beat].
 *
 * Just plug in t to evaluate the equation.  There's no JavaScript function to
 * do this because it's always done on the GPU.
 *
 * @constructor
 */
EquationCoefficients = function(a, b, c, d, e, f, lA, lB, lC, lerpRate) {
  assert(!isNaN(a) && !isNaN(b) && !isNaN(c));
  d = d || 0;
  e = e || 0;
  f = f || 0;
  assert(!isNaN(d) && !isNaN(e) && !isNaN(f));
  lA = lA || 0;
  lB = lB || 0;
  lC = lC || 0;
  assert(!isNaN(lA) && !isNaN(lB) && !isNaN(lC));
  lerpRate = lerpRate || 0;
  this.a = a;
  this.b = b;
  this.c = c;
  this.d = d;
  this.e = e;
  this.f = f;
  this.lA = lA;
  this.lB = lB;
  this.lC = lC;
  this.lerpRate = lerpRate;
}

/**
 * Create a new equation that's equivalent to this equation's coefficients a-f
 * with a LERP to the polynomial portion of the supplied equation.
 * @param {!EquationCoefficients} eqn the source of coefficients.
 * @param {!number} lerpRate the rate and direction of the LERP; positive for
 *     "from this equation to the new one" and vice-versa.
 * @return {!EquationCoefficients} a new set of coefficients.
 */
EquationCoefficients.prototype.lerpIn = function(eqn, lerpRate) {
  assert(!this.lerpRate);
  return new EquationCoefficients(this.a, this.b, this.c, this.d, this.e,
      this.f, eqn.a, eqn.b, eqn.c, lerpRate);
};

/**
 * Convert the EquationCoefficients to a string for debugging.
 * @return {String} debugging output.
 */
EquationCoefficients.prototype.toString = function() {
  return 'F(t) := ' + this.a.toFixed(2) + ' t^2 + ' + this.b.toFixed(2) +
      ' t + ' + this.c.toFixed(2) + ' + ' +
      this.d.toFixed(2) + ' sin(' + this.f.toFixed(2) + ' t) + ' +
      this.e.toFixed(2) + ' cos(' + this.f.toFixed(2) + ' t) + LERP(' +
      this.lerpRate.toFixed(2) + ') of ' +
      this.lA.toFixed(2) + ' t^2 + ' + this.lB.toFixed(2) +
      ' t + ' + this.lC.toFixed(2);
};

/**
 * A set of equations which describe the motion of an object over time.
 * The three equations each supply one dimension of the motion, and the curve is
 * valid from startTime to startTime + duration.
 * @param {!number} startTime the initial time at which the curve is valid.
 * @param {!number} duration how long [in beats] the curve is valid.
 * @param {!EquationCoefficients} xEqn the equation for motion in x.
 * @param {!EquationCoefficients} yEqn the equation for motion in y.
 * @param {!EquationCoefficients} zEqn the equation for motion in z.
 * @constructor
 */
Curve = function(startTime, duration, xEqn, yEqn, zEqn) {
  this.startTime = startTime;
  this.duration = duration;
  this.xEqn = xEqn;
  this.yEqn = yEqn;
  this.zEqn = zEqn;
}

/**
 * Convert the Curve to a string for debugging.
 * @return {String} debugging output.
 */
Curve.prototype.toString = function() {
  var s = 'startTime: ' + this.startTime + '\n';
  s += 'duration: ' + this.duration + '\n';
  s += this.xEqn + '\n';
  s += this.yEqn + '\n';
  s += this.zEqn + '\n';
  return s;
};

/**
 * Modify this curve's coefficients to include a LERP to the polynomial
 * portion of the supplied curve.
 * @param {!Curve} curve the source of coefficients.
 * @param {!number} lerpRate the rate and direction of the LERP; positive for
 *     "from this equation to the new one" and vice-versa.
 * @return {!Curve} a new curve.
 */
Curve.prototype.lerpIn = function(curve, lerpRate) {
  assert(this.startTime == curve.startTime);
  assert(this.duration == curve.duration);
  var xEqn = this.xEqn.lerpIn(curve.xEqn, lerpRate);
  var yEqn = this.yEqn.lerpIn(curve.yEqn, lerpRate);
  var zEqn = this.zEqn.lerpIn(curve.zEqn, lerpRate);
  return new Curve(this.startTime, this.duration, xEqn, yEqn, zEqn);
};

/**
 * Produce a set of polynomial coefficients that describe linear motion between
 * two points in 1 dimension.
 * @param {!number} startPos the starting position.
 * @param {!number} endPos the ending position.
 * @param {!number} duration how long the motion takes.
 * @return {!EquationCoefficients} the equation for the motion.
 */
Curve.computeLinearCoefficients = function(startPos, endPos, duration) {
  return new EquationCoefficients(
      0, (endPos - startPos) / duration, startPos);
}

var GRAVITY = 1; // Higher means higher throws for the same duration.
/**
 * Produce a set of polynomial coefficients that describe parabolic motion
 * between two points in 1 dimension.
 * @param {!number} startPos the starting position.
 * @param {!number} endPos the ending position.
 * @param {!number} duration how long the motion takes.
 * @return {!EquationCoefficients} the equation for the motion.
 */
Curve.computeParabolicCoefficients = function(startPos, endPos, duration) {
  var dY = endPos - startPos;
  return new EquationCoefficients(-GRAVITY / 2,
                                  dY / duration + GRAVITY * duration / 2,
                                  startPos);
}

/**
 * Compute the curve taken by a ball given its throw and catch positions, the
 * time it was thrown, and how long it stayed in the air.
 *
 * We use duration rather than throwTime and catchTime because, what
 * with the modular arithmetic used in our records, catchTime might be before
 * throwTime, and in some representations the pattern could wrap around a few
 * times while the ball's in the air.  When the parabola computed here is used,
 * time must be supplied as an offset from the time of the throw, and must of
 * course not wrap at all.  That is, these coefficients work for f(0) ==
 * throwPos, f(duration) == catchPos.
 *
 * We treat the y axis as vertical and thus affected by gravity.
 *
 * @param {!EquationCoefficients} throwPos
 * @param {!EquationCoefficients} catchPos
 * @param {!number} startTime
 * @param {!number} duration
 * @return {!Curve}
 */
Curve.computeThrowCurve = function(throwPos, catchPos, startTime, duration) {
  var xEqn = Curve.computeLinearCoefficients(throwPos.x, catchPos.x, duration);
  var yEqn = Curve.computeParabolicCoefficients(throwPos.y, catchPos.y,
      duration);
  var zEqn = Curve.computeLinearCoefficients(throwPos.z, catchPos.z, duration);
  return new Curve(startTime, duration, xEqn, yEqn, zEqn);
}

/**
 * Compute a straight line Curve given start and end positions, the start time,
 * and the duration of the motion.
 *
 * @param {!EquationCoefficients} startPos
 * @param {!EquationCoefficients} endPos
 * @param {!number} startTime
 * @param {!number} duration
 * @return {!Curve}
 */
Curve.computeStraightLineCurve =
    function(startPos, endPos, startTime, duration) {
  var xEqn = Curve.computeLinearCoefficients(startPos.x, endPos.x, duration);
  var yEqn = Curve.computeLinearCoefficients(startPos.y, endPos.y, duration);
  var zEqn = Curve.computeLinearCoefficients(startPos.z, endPos.z, duration);
  return new Curve(startTime, duration, xEqn, yEqn, zEqn);
}

/**
 * Threshold horizontal distance below which computeCircularCurve won't bother
 * trying to approximate a circular curve.  See the comment above
 * computeCircularCurve for more info.
 * @type {number}
 */
Curve.EPSILON = .0001;

/**
 * Compute a circular curve, used as an approximation for the motion of a hand
 * between a catch and its following throw.
 *
 * Assumes a lot of stuff about this looking like a "normal" throw: the catch is
 * moving roughly the opposite direction as the throw, the throw and catch
 * aren't at the same place, and such.  Otherwise this looks very odd at best.
 * This is used for the height of the curve.
 * This produces coefficients for d sin(f t) + e cos(f t) for each of x, y, z.
 * It produces a vertical-ish circular curve from the start to the end, going
 * down, then up.  So if dV [the distance from the start to finish in the x-z
 * plane, ignoring y] is less than Curve.EPSILON, it doesn't know which way down
 * is, and it bails by returning a straight line instead.
 */
Curve.computeCircularCurve = function(startPos, endPos, startTime, duration) {
  var dX = endPos.x - startPos.x;
  var dY = endPos.y - startPos.y;
  var dZ = endPos.z - startPos.z;
  var dV = Math.sqrt(dX * dX + dZ * dZ);
  if (dV < Curve.EPSILON) {
    return Curve.computeStraightLineCurve(startPos, endPos, startTime,
        duration);
  }
  var negHalfdV = -0.5 * dV;
  var negHalfdY = -0.5 * dY;
  var f = Math.PI / duration;
  var yEqn = new EquationCoefficients(
      0, 0, startPos.y + dY / 2,
      negHalfdV, negHalfdY, f);
  var ratio = dX / dV;
  var xEqn = new EquationCoefficients(
      0, 0, startPos.x + dX / 2,
      negHalfdY * ratio, negHalfdV * ratio, f);
  ratio = dZ / dV;
  var zEqn = new EquationCoefficients(
      0, 0, startPos.z + dZ / 2,
      negHalfdY * ratio, negHalfdV * ratio, f);
  return new Curve(startTime, duration, xEqn, yEqn, zEqn);
}

/**
 * This is the abstract base class for an object that describes a throw, catch,
 * or empty hand [placeholder] in a site-swap pattern.
 * @constructor
 */
Descriptor = function() {
}

/**
 * Create an otherwise-identical copy of this descriptor at a given time offset.
 * Note that offset may put time past patternLength; the caller will have to fix
 * this up manually.
 * @param {number} offset how many beats to offset the new descriptor.
 * Derived classes must override this function.
 */
Descriptor.prototype.clone = function(offset) {
  throw new Error('Unimplemented.');
};

/**
 * Generate the Curve implied by this descriptor and the supplied hand
 * positions.
 * @param {!Array.HandPositionRecord} handPositions where the hands will be.
 * Derived classes must override this function.
 */
Descriptor.prototype.generateCurve = function(handPositions) {
  throw new Error('Unimplemented.');
};

/**
 * Adjust the start time of this Descriptor to be in [0, pathLength).
 * @param {!number} pathLength the duration of a path, in beats.
 * @return {!Descriptor} this.
 */
Descriptor.prototype.fixUpModPathLength = function(pathLength) {
  this.time = this.time % pathLength;
  return this;
};

/**
 * This describes a throw in a site-swap pattern.
 * @param {!number} throwNum the site-swap number of the throw.
 * @param {!number} throwTime the time this throw occurs.
 * @param {!number} sourceHand the index of the throwing hand.
 * @param {!number} destHand the index of the catching hand.
 * @constructor
 */
ThrowDescriptor = function(throwNum, throwTime, sourceHand, destHand) {
  this.throwNum = throwNum;
  this.sourceHand = sourceHand;
  this.destHand = destHand;
  this.time = throwTime;
}

/**
 * This is a subclass of Descriptor.
 */
ThrowDescriptor.prototype = new Descriptor();

/**
 * Set up the constructor, just to be neat.
 */
ThrowDescriptor.prototype.constructor = ThrowDescriptor;

/**
 * We label each Descriptor subclass with a type for debugging.
 */
ThrowDescriptor.prototype.type = 'THROW';

/**
 * Create an otherwise-identical copy of this descriptor at a given time offset.
 * Note that offset may put time past patternLength; the caller will have to fix
 * this up manually.
 * @param {number} offset how many beats to offset the new descriptor.
 * @return {!Descriptor} the new copy.
 */
ThrowDescriptor.prototype.clone = function(offset) {
  offset = offset || 0;  // Turn null into 0.
  return new ThrowDescriptor(this.throwNum, this.time + offset,
      this.sourceHand, this.destHand);
};

/**
 * Convert the ThrowDescriptor to a string for debugging.
 * @return {String} debugging output.
 */
ThrowDescriptor.prototype.toString = function() {
  return '(' + this.throwNum + ' from hand ' + this.sourceHand + ' to hand ' +
    this.destHand + ')';
};

/**
 * Generate the Curve implied by this descriptor and the supplied hand
 * positions.
 * @param {!Array.HandPositionRecord} handPositions where the hands will be.
 * @return {!Curve} the curve.
 */
ThrowDescriptor.prototype.generateCurve = function(handPositions) {
  var startPos = handPositions[this.sourceHand].throwPositions[this.destHand];
  var endPos = handPositions[this.destHand].catchPosition;
  return Curve.computeThrowCurve(startPos, endPos, this.time,
      this.throwNum - 1); };

/**
 * This describes a catch in a site-swap pattern.
 * @param {!number} hand the index of the catching hand.
 * @param {!number} sourceThrowNum the site-swap number of the preceeding throw.
 * @param {!number} destThrowNum the site-swap number of the following throw.
 * @param {!number} sourceHand the index of the hand throwing the source throw.
 * @param {!number} destHand the index of the hand catching the following throw.
 * @param {!number} catchTime the time at which the catch occurs.
 * @constructor
 */
CarryDescriptor = function(hand, sourceThrowNum, destThrowNum, sourceHand,
    destHand, catchTime) {
  this.hand = hand;
  this.sourceThrowNum = sourceThrowNum;
  this.destThrowNum = destThrowNum;
  this.sourceHand = sourceHand;
  this.destHand = destHand;
  this.time = catchTime;
}

/**
 * This is a subclass of Descriptor.
 */
CarryDescriptor.prototype = new Descriptor();

/**
 * Set up the constructor, just to be neat.
 */
CarryDescriptor.prototype.constructor = CarryDescriptor;

/**
 * We label each Descriptor subclass with a type for debugging.
 */
CarryDescriptor.prototype.type = 'CARRY';

/**
 * Since this gets pathLength, not patternLength, we'll have to collapse sets
 * of CarryDescriptors later, as they may be spread sparsely through the full
 * animation and we'll only want them to be distributed over the full pattern
 * length.  We may have dupes to throw away as well.
 * @param {!ThrowDescriptor} inThrowDescriptor
 * @param {!ThrowDescriptor} outThrowDescriptor
 * @param {!number} pathLength
 * @return {!CarryDescriptor}
 */
CarryDescriptor.fromThrowDescriptors = function(inThrowDescriptor,
    outThrowDescriptor, pathLength) {
  assert(inThrowDescriptor.destHand == outThrowDescriptor.sourceHand);
  assert((inThrowDescriptor.time + inThrowDescriptor.throwNum) %
      pathLength == outThrowDescriptor.time);
  return new CarryDescriptor(inThrowDescriptor.destHand,
      inThrowDescriptor.throwNum, outThrowDescriptor.throwNum,
      inThrowDescriptor.sourceHand, outThrowDescriptor.destHand,
      (outThrowDescriptor.time + pathLength - 1) % pathLength);
};

/**
 * Create an otherwise-identical copy of this descriptor at a given time offset.
 * Note that offset may put time past patternLength; the caller will have to fix
 * this up manually.
 * @param {number} offset how many beats to offset the new descriptor.
 * @return {!Descriptor} the new copy.
 */
CarryDescriptor.prototype.clone = function(offset) {
  offset = offset || 0;  // Turn null into 0.
  return new CarryDescriptor(this.hand, this.sourceThrowNum,
      this.destThrowNum, this.sourceHand, this.destHand, this.time + offset);
};

/**
 * Convert the CarryDescriptor to a string for debugging.
 * @return {String} debugging output.
 */
CarryDescriptor.prototype.toString = function() {
  return 'time: ' + this.time + ' (hand ' + this.hand + ' catches ' +
    this.sourceThrowNum + ' from hand ' + this.sourceHand + ' then throws ' +
    this.destThrowNum + ' to hand ' + this.destHand + ')';
};

/**
 * Test if this CarryDescriptor is equivalent to another, mod patternLength.
 * @param {!CarryDescriptor} cd the other CarryDescriptor.
 * @param {!number} patternLength the length of the pattern.
 * @return {!bool}
 */
CarryDescriptor.prototype.equalsWithMod = function(cd, patternLength) {
  if (!(cd instanceof CarryDescriptor)) {
    return false;
  }
  if (this.hand != cd.hand) {
    return false;
  }
  if (this.sourceThrowNum != cd.sourceThrowNum) {
    return false;
  }
  if (this.destThrowNum != cd.destThrowNum) {
    return false;
  }
  if (this.sourceHand != cd.sourceHand) {
    return false;
  }
  if (this.destHand != cd.destHand) {
    return false;
  }
  if (this.time % patternLength != cd.time % patternLength) {
    return false;
  }
  return true;
};

/**
 * Generate the Curve implied by this descriptor and the supplied hand
 * positions.
 * @param {!Array.HandPositionRecord} handPositions where the hands will be.
 * @return {!Curve} the curve.
 */
CarryDescriptor.prototype.generateCurve = function(handPositions) {
  var startPos = handPositions[this.hand].catchPosition;
  var endPos = handPositions[this.hand].throwPositions[this.destHand];
  return Curve.computeCircularCurve(startPos, endPos, this.time, 1);
};

/**
 * This describes a carry of a "1" in a site-swap pattern.
 * The flags isThrow and isCatch tell whether this is the actual 1 [isThrow] or
 * the carry that receives the handoff [isCatch].  It's legal for both to be
 * true, which happens when there are two 1s in a row.
 * @param {!number} sourceThrowNum the site-swap number of the prev throw
 * [including this one if isCatch].
 * @param {!number} sourceHand the index of the hand throwing sourceThrowNum.
 * @param {!number} destThrowNum the site-swap number of the next throw
 * [including this one if isThrow].
 * @param {!number} destHand the index of the hand catching destThrowNum.
 * @param {!number} hand the index of the hand doing this carry.
 * @param {!number} time the time at which the carry starts.
 * @param {!bool} isThrow whether this is a 1.
 * @param {!bool} isCatch whether this is the carry after a 1.
 * @constructor
 */
CarryOneDescriptor = function(sourceThrowNum, sourceHand, destThrowNum,
    destHand, hand, time, isThrow, isCatch) {
  // It's possible to have !isCatch with sourceThrowNum == 1 temporarily, if we
  // just haven't handled that 1 yet [we're doing the throw of this one, and
  // will later get to the previous one, due to wraparound], and vice-versa.
  assert(isThrow || (sourceThrowNum == 1));
  assert(isCatch || (destThrowNum == 1));
  this.sourceThrowNum = sourceThrowNum;
  this.sourceHand = sourceHand;
  this.destHand = destHand;
  this.destThrowNum = destThrowNum;
  this.hand = hand;
  this.time = time;
  this.isThrow = isThrow;
  this.isCatch = isCatch;
  return this;
}

/**
 * This is a subclass of Descriptor.
 */
CarryOneDescriptor.prototype = new Descriptor();

/**
 * Set up the constructor, just to be neat.
 */
CarryOneDescriptor.prototype.constructor = CarryOneDescriptor;

/**
 * We label each Descriptor subclass with a type for debugging.
 */
CarryOneDescriptor.prototype.type = 'CARRY_ONE';

/**
 * Create a pair of CarryOneDescriptors to describe the carry that is a throw of
 * 1.  A 1 spends all its time being carried, so these two carries surrounding
 * it represent [and therefore don't have] a throw between them.
 * Prev and post are generally the ordinary CarryDescriptors surrounding the
 * throw of 1 that we're trying to implement.  However, they could each [or
 * both] independently be CarryOneDescriptors implementing other 1 throws.
 * @param {!Descriptor} prev the carry descriptor previous to the 1.
 * @param {!Descriptor} post the carry descriptor subsequent to the 1.
 * @return {!Array.CarryOneDescriptor} a pair of CarryOneDescriptors.
 */
CarryOneDescriptor.getDescriptorPair = function(prev, post) {
  assert(prev instanceof CarryDescriptor || prev instanceof CarryOneDescriptor);
  assert(post instanceof CarryDescriptor || post instanceof CarryOneDescriptor);
  assert(prev.destHand == post.hand);
  assert(prev.hand == post.sourceHand);
  var newPrev;
  var newPost;
  if (prev instanceof CarryOneDescriptor) {
    assert(prev.isCatch && !prev.isThrow);
    newPrev = prev;
    newPrev.isThrow = true;
    assert(newPrev.destHand == post.hand);
  } else {
    newPrev = new CarryOneDescriptor(prev.sourceThrowNum, prev.sourceHand, 1,
        post.hand, prev.hand, prev.time, true, false);
  }
  if (post instanceof CarryOneDescriptor) {
    assert(post.isThrow && !post.isCatch);
    newPost = post;
    newPost.isCatch = true;
    assert(newPost.sourceHand == prev.hand);
    assert(newPost.sourceThrowNum == 1);
  } else {
    newPost = new CarryOneDescriptor(1, prev.hand, post.destThrowNum,
        post.destHand, post.hand, post.time, false, true);
  }
  return [newPrev, newPost];
};

/**
 * Convert the CarryOneDescriptor to a string for debugging.
 * @return {String} debugging output.
 */
CarryOneDescriptor.prototype.toString = function() {
  var s;
  if (this.isThrow) {
    s = 'Hand ' + this.hand + ' catches a ' + this.sourceThrowNum + ' from ' +
        this.sourceHand + ' at time ' + this.time + ' and then passes a 1 to ' +
        this.destHand + '.';
  } else {
    assert(this.isCatch && this.sourceThrowNum == 1);
    s = 'Hand ' + this.hand + ' catches a 1 from ' + this.sourceHand +
        ' at time ' + this.time + ' and then passes a ' + this.destThrowNum +
        ' to ' + this.destHand + '.';
  }
  return s;
};

/**
 * Compute the curve taken by a ball during the carry representing a 1, as long
 * as it's not both a catch and a throw of a 1, which is handled elsewhere.
 * It's either a LERP from a circular curve [a catch of a throw > 1] to a
 * straight line to the handoff point [for isThrow] or a LERP from a straight
 * line from the handoff to a circular curve for the next throw > 1 [for
 * isCatch].
 *
 * @param {!EquationCoefficients} catchPos
 * @param {!EquationCoefficients} throwPos
 * @param {!EquationCoefficients} handoffPos
 * @param {!number} startTime
 * @param {!bool} isCatch whether this is the carry after a 1.
 * @param {!bool} isThrow whether this is a 1.
 * @return {!Curve}
 */
Curve.computeCarryOneCurve = function(catchPos, throwPos, handoffPos, startTime,
    isCatch, isThrow) {
  assert(!isCatch != !isThrow);
  var curve = Curve.computeCircularCurve(catchPos, throwPos, startTime, 1);
  var curve2 = Curve.computeStraightLineCurve(handoffPos, handoffPos,
      startTime, 1);
  return curve.lerpIn(curve2, isThrow ? 1 : -1);
}

/**
 * Compute the curve taken by a ball during the carry representing a 1 that is
 * both the catch of one 1 and the immediately-following throw of another 1.
 *
 * @param {!EquationCoefficients} leadingHandoffPos
 * @param {!EquationCoefficients} trailingHandoffPos
 * @param {!Array.HandPositionRecord} handPositions where the hands will be.
 * @param {!number} hand
 * @param {!number} time the time at which the first 1's catch takes place.
 * @return {!Curve}
 */
Curve.computeConsecutiveCarryOneCurve = function(leadingHandoffPos,
    trailingHandoffPos, handPositions, hand, time) {
  var curve = Curve.computeStraightLineCurve(leadingHandoffPos,
      handPositions[hand].basePosition, time, 1);
  var curve2 =
    Curve.computeStraightLineCurve(handPositions[hand].basePosition,
        trailingHandoffPos, time, 1);
  return curve.lerpIn(curve2, 1);
}

/**
 * Generate the Curve implied by this descriptor and the supplied hand
 * positions.
 * @param {!Array.HandPositionRecord} handPositions where the hands will be.
 * @return {!Curve} the curve.
 */
CarryOneDescriptor.prototype.generateCurve = function(handPositions) {
  var leadingHandoffPos, trailingHandoffPos;
  if (this.isCatch) {
    var p0 = handPositions[this.hand].basePosition;
    var p1 = handPositions[this.sourceHand].basePosition;
    handoffPos = leadingHandoffPos = p0.add(p1).scale(0.5);
  }
  if (this.isThrow) {
    var p0 = handPositions[this.hand].basePosition;
    var p1 = handPositions[this.destHand].basePosition;
    handoffPos = trailingHandoffPos = p0.add(p1).scale(0.5);
  }
  if (!this.isCatch || !this.isThrow) {
    return Curve.computeCarryOneCurve(handPositions[this.hand].catchPosition,
        handPositions[this.hand].throwPositions[this.destHand], handoffPos,
        this.time, this.isCatch, this.isThrow);
  } else {
    return Curve.computeConsecutiveCarryOneCurve(leadingHandoffPos,
        trailingHandoffPos, handPositions, this.hand, this.time);
  }
};

/**
 * Create an otherwise-identical copy of this descriptor at a given time offset.
 * Note that offset may put time past patternLength; the caller will have to fix
 * this up manually.
 * @param {number} offset how many beats to offset the new descriptor.
 * @return {!Descriptor} the new copy.
 */
CarryOneDescriptor.prototype.clone = function(offset) {
  offset = offset || 0;  // Turn null into 0.
  return new CarryOneDescriptor(this.sourceThrowNum, this.sourceHand,
      this.destThrowNum, this.destHand, this.hand, this.time + offset,
      this.isThrow, this.isCatch);
};

/**
 * Test if this CarryOneDescriptor is equivalent to another, mod patternLength.
 * @param {!CarryOneDescriptor} cd the other CarryOneDescriptor.
 * @param {!number} patternLength the length of the pattern.
 * @return {!bool}
 */
CarryOneDescriptor.prototype.equalsWithMod = function(cd, patternLength) {
  if (!(cd instanceof CarryOneDescriptor)) {
    return false;
  }
  if (this.hand != cd.hand) {
    return false;
  }
  if (this.sourceThrowNum != cd.sourceThrowNum) {
    return false;
  }
  if (this.destThrowNum != cd.destThrowNum) {
    return false;
  }
  if (this.sourceHand != cd.sourceHand) {
    return false;
  }
  if (this.destHand != cd.destHand) {
    return false;
  }
  if (this.isCatch != cd.isCatch) {
    return false;
  }
  if (this.isThrow != cd.isThrow) {
    return false;
  }
  if (this.time % patternLength != cd.time % patternLength) {
    return false;
  }
  return true;
};

/**
 * This describes an empty hand in a site-swap pattern.
 * @param {!Descriptor} cd0 the CarryDescriptor or CarryOneDescriptor describing
 * this hand immediately before it was emptied.
 * @param {!Descriptor} cd1 the CarryDescriptor or CarryOneDescriptor describing
 * this hand immediately after it's done being empty.
 * @param {!number} patternLength the length of the pattern.
 * @constructor
 */
EmptyHandDescriptor = function(cd0, cd1, patternLength) {
  assert(cd0.hand == cd1.hand);
  this.hand = cd0.hand;
  this.prevThrowDest = cd0.destHand;
  this.sourceThrowNum = cd0.destThrowNum;
  this.nextCatchSource = cd1.sourceHand;
  this.destThrowNum = cd1.sourceThrowNum;
  // This code assumes that each CarryDescriptor and CarryOneDescriptor always
  // has a duration of 1 beat.  If we want to be able to allow long-held balls
  // [instead of thrown twos, for example], we'll have to fix that here and a
  // number of other places.
  this.time = (cd0.time + 1) % patternLength;
  this.duration = cd1.time - this.time;
  if (this.duration < 0) {
    this.duration += patternLength;
    assert(this.duration > 0);
  }
}

/**
 * This is a subclass of Descriptor.
 */
EmptyHandDescriptor.prototype = new Descriptor();

/**
 * Set up the constructor, just to be neat.
 */
EmptyHandDescriptor.prototype.constructor = EmptyHandDescriptor;

/**
 * We label each Descriptor subclass with a type for debugging.
 */
EmptyHandDescriptor.prototype.type = 'EMPTY';

/**
 * Convert the EmptyHandDescriptor to a string for debugging.
 * @return {String} debugging output.
 */
EmptyHandDescriptor.prototype.toString = function() {
  return 'time: ' + this.time + ' for ' + this.duration + ' (hand ' +
      this.hand + ', after throwing a ' + this.sourceThrowNum + ' to hand ' +
      this.prevThrowDest + ' then catches a ' + this.destThrowNum +
      ' from hand ' + this.nextCatchSource + ')';
};

/**
 * Generate the Curve implied by this descriptor and the supplied hand
 * positions.
 * @param {!Array.HandPositionRecord} handPositions where the hands will be.
 * @return {!Curve} the curve.
 */
EmptyHandDescriptor.prototype.generateCurve = function(handPositions) {
  var startPos, endPos;
  if (this.sourceThrowNum == 1) {
    var p0 = handPositions[this.hand].basePosition;
    var p1 = handPositions[this.prevThrowDest].basePosition;
    startPos = p0.add(p1).scale(0.5);
  } else {
    startPos = handPositions[this.hand].throwPositions[this.prevThrowDest];
  }
  if (this.destThrowNum == 1) {
    var p0 = handPositions[this.hand].basePosition;
    var p1 = handPositions[this.nextCatchSource].basePosition;
    endPos = p0.add(p1).scale(0.5);
  } else {
    endPos = handPositions[this.hand].catchPosition;
  }
  // TODO: Replace with a good empty-hand curve.
  return Curve.computeStraightLineCurve(startPos, endPos, this.time,
      this.duration);
};

/**
 * A series of descriptors that describes the full path of an object during a
 * pattern.
 * @param {!Array.Descriptor} descriptors all descriptors for the object.
 * @param {!number} pathLength the length of the path in beats.
 * @constructor
 */
Path = function(descriptors, pathLength) {
  this.descriptors = descriptors;
  this.pathLength = pathLength;
}

/**
 * Create a Path representing a ball, filling in the gaps between the throws
 * with carry descriptors.  Since it's a ball's path, there are no
 * EmptyHandDescriptors in the output.
 * @param {!Array.ThrowDescriptor} throwDescriptors the ball's part of the
 * pattern.
 * @param {!number} pathLength the length of the pattern in beats.
 * @return {!Path} the ball's full path.
 */
Path.ballPathFromThrowDescriptors = function(throwDescriptors, pathLength) {
  return new Path(
      Path.createDescriptorList(throwDescriptors, pathLength), pathLength);
};

/**
 * Create the sequence of ThrowDescriptors, CarryDescriptors, and
 * CarryOneDescriptor describing the path of a ball through a pattern.
 * A sequence such as (h j k) generally maps to an alternating series of throw
 * and carry descriptors [Th Chj Tj Cjk Tk Ck? ...].  However, when j is a 1,
 * you remove the throw descriptor and modify the previous and subsequent carry
 * descriptors, since the throw descriptor has zero duration and the carry
 * descriptors need to take into account the handoff.
 * @param {!Array.ThrowDescriptor} throwDescriptors the ball's part of the
 * pattern.
 * @param {!number} pathLength the length of the pattern in beats.
 * @return {!Array.Descriptor} the full set of descriptors for the ball.
 */
Path.createDescriptorList = function(throwDescriptors, pathLength) {
  var descriptors = [];
  var prevThrow;
  for (var index in throwDescriptors) {
    var td = throwDescriptors[index];
    if (prevThrow) {
      descriptors.push(
          CarryDescriptor.fromThrowDescriptors(prevThrow, td, pathLength));
    } // Else it's handled after the loop.
    descriptors.push(td);
    prevThrow = td;
  }
  descriptors.push(
      CarryDescriptor.fromThrowDescriptors(prevThrow, throwDescriptors[0],
        pathLength));
  // Now post-process to take care of throws of 1.  It's easier to do it here
  // than during construction since we can now assume that the previous and
  // subsequent carry descriptors are already in place [modulo pathLength].
  for (var i = 0; i < descriptors.length; ++i) {
    var descriptor = descriptors[i];
    if (descriptor instanceof ThrowDescriptor) {
      if (descriptor.throwNum == 1) {
        var prevIndex = (i + descriptors.length - 1) % descriptors.length;
        var postIndex = (i + 1) % descriptors.length;
        var replacements = CarryOneDescriptor.getDescriptorPair(
            descriptors[prevIndex], descriptors[postIndex]);
        descriptors[prevIndex] = replacements[0];
        descriptors[postIndex] = replacements[1];
        descriptors.splice(i, 1);
        // We've removed a descriptor from the array, but since we can never
        // have 2 ThrowDescriptors in a row, we don't need to decrement i.
      }
    }
  }
  return descriptors;
};

/**
 * Convert the Path to a string for debugging.
 * @return {String} debugging output.
 */
Path.prototype.toString = function() {
  var ret = 'pathLength is ' + this.pathLength + '; [';
  for (var index in this.descriptors) {
    ret += this.descriptors[index].toString();
  }
  ret += ']';
  return ret;
};

/**
 * Create an otherwise-identical copy of this path at a given time offset.
 * Note that offset may put time references in the Path past the length of the
 * pattern.  The caller must fix this up manually.
 * @param {number} offset how many beats to offset the new Path.
 * @return {!Path} the new copy.
 */
Path.prototype.clone = function(offset) {
  offset = offset || 0;  // Turn null into 0.
  var descriptors = [];
  for (var index in this.descriptors) {
    descriptors.push(this.descriptors[index].clone(offset));
  }
  return new Path(descriptors, this.pathLength);
};

/**
 * Adjust the start time of all descriptors to be in [0, pathLength) via modular
 * arithmetic.  Reorder the array such that they're sorted in increasing order
 * of time.
 * @return {!Path} this.
 */
Path.prototype.fixUpModPathLength = function() {
  var splitIndex;
  var prevTime = 0;
  for (var index in this.descriptors) {
    var d = this.descriptors[index];
    d.fixUpModPathLength(this.pathLength);
    if (d.time < prevTime) {
      assert(null == splitIndex);
      splitIndex = index; // From here to the end should move to the start.
    }
    prevTime = d.time;
  }
  if (null != splitIndex) {
    var temp = this.descriptors.slice(splitIndex);
    this.descriptors.length = splitIndex;
    this.descriptors = temp.concat(this.descriptors);
  }
  return this;
};

/**
 * Take a standard asynch siteswap pattern [expressed as an array of ints] and
 * a number of hands, and expand it into a 2D grid of ThrowDescriptors with one
 * row per hand.
 * Non-asynch patterns are more complicated, since their linear forms aren't
 * fully-specified, so we don't handle them here.
 * You'll want to expand your pattern to the LCM of numHands and minimal pattern
 * length before calling this.
 * The basic approach doesn't really work for one-handed patterns.  It ends up
 * with catches and throws happening at the same time [having removed all
 * empty-hand time in between them].  To fix this, we double all throw heights
 * and space them out, as if doing a two-handed pattern with all zeroes from the
 * other hand.  Yes, this points out that the overall approach we're taking is a
 * bit odd [since you end up with hands empty for time proportional to the
 * number of hands], but you have to make some sort of assumptions to generalize
 * siteswaps to N hands, and that's what I chose.
 * @param {!Array.number} pattern an asynch siteswap pattern.
 * @param {!number} numHands the number of hands.
 * @return {!Array.Array.ThrowDescriptor} the expanded pattern.
 */
function expandPattern(pattern, numHands) {
  var fullPattern = [];
  assert(numHands > 0);
  if (numHands == 1) {
    numHands = 2;
    var temp = [];
    for (var i = 0; i < pattern.length; ++i) {
      temp[2 * i] = 2 * pattern[i];
      temp[2 * i + 1] = 0;
    }
    pattern = temp;
  }
  for (var hand = 0; hand < numHands; ++hand) {
    fullPattern[hand] = [];
  }
  for (var time = 0; time < pattern.length; ++time) {
    for (var hand = 0; hand < numHands; ++hand) {
      var t;
      if (hand == time % numHands) {
        t = new ThrowDescriptor(pattern[time], time, hand,
            (hand + pattern[time]) % numHands);
      } else {
        // These are ignored during analysis, so they don't appear in BallPaths.
        t = new ThrowDescriptor(0, time, hand, hand);
      }
      fullPattern[hand].push(t);
    }
  }
  return fullPattern;
}

// TODO: Wrap the final pattern in a class, then make the remaining few global
// functions be members of that class to clean up the global namespace.

/**
 * Given a valid site-swap for a nonzero number of balls, stored as an expanded
 * pattern array-of-arrays, with pattern length the LCM of hands and minimal
 * pattern length, produce Paths for all the balls.
 * @param {!Array.Array.ThrowDescriptor} pattern a valid pattern.
 * @return {!Array.Path} the paths of all the balls.
 */
function generateBallPaths(pattern) {
  var numHands = pattern.length;
  assert(numHands > 0);
  var patternLength = pattern[0].length;
  assert(patternLength > 0);
  var sum = 0;
  for (var hand in pattern) {
    for (var time in pattern[hand]) {
      sum += pattern[hand][time].throwNum;
    }
  }
  var numBalls = sum / patternLength;
  assert(numBalls == Math.round(numBalls));
  assert(numBalls > 0);

  var ballsToAllocate = numBalls;
  var ballPaths = [];
  // NOTE: The indices of locationsChecked are reversed from those of pattern
  // for simplicity of allocation.  This might be worth flipping to match.
  var locationsChecked = [];
  for (var time = 0; time < patternLength && ballsToAllocate; ++time) {
    locationsChecked[time] = locationsChecked[time] || [];
    for (var hand = 0; hand < numHands && ballsToAllocate; ++hand) {
      if (locationsChecked[time][hand]) {
        continue;
      }
      var curThrowDesc = pattern[hand][time];
      var curThrow = curThrowDesc.throwNum;
      if (!curThrow) {
        assert(curThrow === 0);
        continue;
      }
      var throwDescriptors = [];
      var curTime = time;
      var curHand = hand;
      var wraps = 0;
      do {
        if (!locationsChecked[curTime]) {
          locationsChecked[curTime] = [];
        }
        assert(!locationsChecked[curTime][curHand]);
        locationsChecked[curTime][curHand] = true;
        // We copy curThrowDesc here, adding wraps * patternLength, to get
        // the true throw time relative to offset.  Later we'll add in offset
        // when we clone again, then mod by pathLength.
        throwDescriptors.push(curThrowDesc.clone(wraps * patternLength));
        var nextThrowTime = curThrow + curTime;
        wraps += Math.floor(nextThrowTime / patternLength);
        curTime = nextThrowTime % patternLength;
        assert(curTime >= time); // Else we'd have covered it earlier.
        curHand = curThrowDesc.destHand;
        var tempThrowDesc = curThrowDesc;
        curThrowDesc = pattern[curHand][curTime];
        curThrow = curThrowDesc.throwNum;
        assert(tempThrowDesc.destHand == curThrowDesc.sourceHand);
        assert(curThrowDesc.time ==
            (tempThrowDesc.throwNum + tempThrowDesc.time) % patternLength);
      } while (curTime != time || curHand != hand);
      var pathLength = wraps * patternLength;
      var ballPath =
        Path.ballPathFromThrowDescriptors(throwDescriptors, pathLength);
      for (var i = 0; i < wraps; ++i) {
        var offset = i * patternLength % pathLength;
        ballPaths.push(ballPath.clone(offset, pathLength).fixUpModPathLength());
      }
      ballsToAllocate -= wraps;
      assert(ballsToAllocate >= 0);
    }
  }
  return ballPaths;
}

/**
 * Given an array of ball paths, produce the corresponding set of hand paths.
 * @param {!Array.Path} ballPaths the Paths of all the balls in the pattern.
 * @param {!number} numHands how many hands to use in the pattern.
 * @param {!number} patternLength the length, in beats, of the pattern.
 * @return {!Array.Path} the paths of all the hands.
 */
function generateHandPaths(ballPaths, numHands, patternLength) {
  assert(numHands > 0);
  assert(patternLength > 0);
  var handRecords = []; // One record per hand.
  for (var idxBR in ballPaths) {
    var descriptors = ballPaths[idxBR].descriptors;
    for (var idxD in descriptors) {
      var descriptor = descriptors[idxD];
      // TODO: Fix likely needed for throws of 1.
      if (!(descriptor instanceof ThrowDescriptor)) {
        // It's a CarryDescriptor or a CarryOneDescriptor.
        var hand = descriptor.hand;
        if (!handRecords[hand]) {
          handRecords[hand] = [];
        }
        // TODO: Should we not shorten stuff here if we're going to lengthen
        // everything later anyway?  Is there a risk of inconsistency due to
        // ball paths of different lengths?
        var catchTime = descriptor.time % patternLength;
        if (!handRecords[hand][catchTime]) {
          // We pass in this offset to set the new descriptor's time to
          // catchTime, so as to keep it within [0, patternLength).
          handRecords[hand][catchTime] =
              descriptor.clone(catchTime - descriptor.time);
        } else {
          assert(
              handRecords[hand][catchTime].equalsWithMod(
                  descriptor, patternLength));
        }
      }
    }
  }
  var handPaths = [];
  for (var hand in handRecords) {
    var outDescriptors = [];
    var inDescriptors = handRecords[hand];
    var prevDescriptor = null;
    var descriptor;
    for (var idxD in inDescriptors) {
      descriptor = inDescriptors[idxD];
      assert(descriptor);  // Enumeration should skip array holes.
      assert(descriptor.hand == hand);
      if (prevDescriptor) {
        outDescriptors.push(new EmptyHandDescriptor(prevDescriptor, descriptor,
              patternLength));
      }
      outDescriptors.push(descriptor.clone());
      prevDescriptor = descriptor;
    }
    // Note that this EmptyHandDescriptor that wraps around the end lives at the
    // end of the array, not the beginning, despite the fact that it may be the
    // active one at time zero.  This is the same behavior as with Paths for
    // balls.
    descriptor = new EmptyHandDescriptor(prevDescriptor, outDescriptors[0],
        patternLength);
    if (descriptor.time < outDescriptors[0].time) {
      assert(descriptor.time + descriptor.duration == outDescriptors[0].time);
      outDescriptors.unshift(descriptor);
    } else {
      assert(descriptor.time ==
          outDescriptors[outDescriptors.length - 1].time + 1);
      outDescriptors.push(descriptor);
    }
    handPaths[hand] =
        new Path(outDescriptors, patternLength).fixUpModPathLength();
  }
  return handPaths;
}

// NOTE: All this Vector stuff does lots of object allocations.  If that's a
// problem for your browser [e.g. IE6], you'd better stick with the embedded V8.
// This code predates the creation of o3djs/math.js; I should probably switch it
// over at some point, but for now it's not worth the trouble.

/**
 * A simple 3-dimensional vector.
 * @constructor
 */
Vector = function(x, y, z) {
  this.x = x;
  this.y = y;
  this.z = z;
}

Vector.prototype.sub = function(v) {
  return new Vector(this.x - v.x, this.y - v.y, this.z - v.z);
};

Vector.prototype.add = function(v) {
  return new Vector(this.x + v.x, this.y + v.y, this.z + v.z);
};

Vector.prototype.dot = function(v) {
  return this.x * v.x + this.y * v.y + this.z * v.z;
};

Vector.prototype.length = function() {
  return Math.sqrt(this.dot(this));
};

Vector.prototype.scale = function(s) {
  return new Vector(this.x * s, this.y * s, this.z * s);
};

Vector.prototype.set = function(v) {
  this.x = v.x;
  this.y = v.y;
  this.z = v.z;
};

Vector.prototype.normalize = function() {
  var length = this.length();
  assert(length);
  this.set(this.scale(1 / length));
  return this;
};

/**
 * Convert the Vector to a string for debugging.
 * @return {String} debugging output.
 */
Vector.prototype.toString = function() {
  return '{' + this.x.toFixed(3) + ', ' + this.y.toFixed(3) + ', ' +
      this.z.toFixed(3) + '}';
};

/**
 * A container class that holds the positions relevant to a hand: where it is
 * when it's not doing anything, where it likes to catch balls, and where it
 * likes to throw balls to each of the other hands.
 * @param {!Vector} basePosition the centroid of throw and catch positions when
 * the hand throws to itself.
 * @param {!Vector} catchPosition where the hand likes to catch balls.
 * @constructor
 */
HandPositionRecord = function(basePosition, catchPosition) {
  this.basePosition = basePosition;
  this.catchPosition = catchPosition;
  this.throwPositions = [];
}

/**
 * Convert the HandPositionRecord to a string for debugging.
 * @return {String} debugging output.
 */
HandPositionRecord.prototype.toString = function() {
  var s = 'base: ' + this.basePosition.toString() + ';\n';
  s += 'catch: ' + this.catchPosition.toString() + ';\n';
  s += 'throws:\n';
  for (var i = 0; i < this.throwPositions.length; ++i) {
    s += '[' + i + '] ' + this.throwPositions[i].toString() + '\n';
  }
  return s;
};

/**
 * Compute all the hand positions used in a pattern given a number of hands and
 * a grouping style ["even" for evenly-spaced hands, "pairs" to group them in
 * pairs, as with 2-handed jugglers].
 * @param {!number} numHands the number of hands to use.
 * @param {!String} style the grouping style.
 * @return {!Array.HandPositionRecord} a full set of hand positions.
 */
function computeHandPositions(numHands, style) {
  assert(numHands > 0);
  var majorRadiusScale = 0.75;
  var majorRadius = majorRadiusScale * (numHands - 1);
  var throwCatchOffset = 0.45;
  var catchRadius = majorRadius + throwCatchOffset;
  var handPositionRecords = [];
  for (var hand = 0; hand < numHands; ++hand) {
    var circleFraction;
    if (style == 'even') {
      circleFraction = hand / numHands;
    } else {
      assert(style == 'pairs');
      circleFraction = (hand + Math.floor(hand / 2)) / (1.5 * numHands);
    }
    var cos = Math.cos(Math.PI * 2 * circleFraction);
    var sin = Math.sin(Math.PI * 2 * circleFraction);
    var cX = catchRadius * cos;
    var cY = 0;
    var cZ = catchRadius * sin;
    var bX = majorRadius * cos;
    var bY = 0;
    var bZ = majorRadius * sin;
    handPositionRecords[hand] = new HandPositionRecord(
      new Vector(bX, bY, bZ), new Vector(cX, cY, cZ));
  }
  // Now that we've got all the hands' base and catch positions, we need to
  // compute the appropriate throw positions for each hand pair.
  for (var source = 0; source < numHands; ++source) {
    var throwHand = handPositionRecords[source];
    for (var target = 0; target < numHands; ++target) {
      var catchHand = handPositionRecords[target];
      if (throwHand == catchHand) {
        var baseV = throwHand.basePosition;
        throwHand.throwPositions[target] =
            baseV.add(baseV.sub(throwHand.catchPosition));
      } else {
        var directionV =
            catchHand.catchPosition.sub(throwHand.basePosition).normalize();
        var offsetV = directionV.scale(throwCatchOffset);
        throwHand.throwPositions[target] =
            throwHand.basePosition.add(offsetV);
      }
    }
  }
  return handPositionRecords;
}

/**
 * Convert an array of HandPositionRecord to a string for debugging.
 * @param {!Array.HandPositionRecord} positions the positions to display.
 * @return {String} debugging output.
 */
function getStringFromHandPositions(positions) {
  var s = '';
  for (index in positions) {
    s += positions[index].toString();
  }
  return s;
}

/**
 * The set of curves an object passes through throughout a full animation cycle.
 * @param {!number} duration the length of the animation in beats.
 * @param {!Array.Curve} curves the full set of Curves.
 * @constructor
 */
CurveSet = function(duration, curves) {
  this.duration = duration;
  this.curves = curves;
}

/**
 * Looks up what curve is active at a particular time.  This is slower than
 * getCurveForTime, but can be used even if no Curve starts precisely at
 * unsafeTime % this.duration.
 * @param {!number} unsafeTime the time at which to check.
 * @return {!Curve} the curve active at unsafeTime.
 */
CurveSet.prototype.getCurveForUnsafeTime = function(unsafeTime) {
  unsafeTime %= this.duration;
  time = Math.floor(unsafeTime);
  if (this.curves[time]) {
    return this.curves[time];
  }
  var curve;
  for (var i = time; i >= 0; --i) {
    curve = this.curves[i];
    if (curve) {
      assert(i + curve.duration >= unsafeTime);
      return curve;
    }
  }
  // We must want the last one.  There's always a last one, given how we
  // construct the CurveSets; they're sparse, but the length gets set by adding
  // elements at the end.
  curve = this.curves[this.curves.length - 1];
  unsafeTime += this.duration;
  assert(curve.startTime <= unsafeTime);
  assert(curve.startTime + curve.duration > unsafeTime);
  return curve;
};

/**
 * Looks up what curve is active at a particular time.  This is faster than
 * getCurveForUnsafeTime, but can only be used if if a Curve starts precisely at
 * unsafeTime % this.duration.
 * @param {!number} time the time at which to check.
 * @return {!Curve} the curve starting at time.
 */
CurveSet.prototype.getCurveForTime = function(time) {
  return this.curves[time % this.duration];
};

/**
 * Convert the CurveSet to a string for debugging.
 * @return {String} debugging output.
 */
CurveSet.prototype.toString = function() {
  var s = 'Duration: ' + this.duration + '\n';
  for (var c in this.curves) {
    s += this.curves[c].toString();
  }
  return s;
};

/**
 * Namespace object to hold the pure math functions.
 * TODO: Consider just rolling these into the Pattern object, when it gets
 * created.
 */
var JugglingMath = {};

/**
 * Computes the greatest common devisor of integers a and b.
 * @param {!number} a an integer.
 * @param {!number} b an integer.
 * @return {!number} the GCD of a and b.
 */
JugglingMath.computeGCD = function(a, b) {
  assert(Math.round(a) == a);
  assert(Math.round(b) == b);
  assert(a >= 0);
  assert(b >= 0);
  if (!b) {
    return a;
  } else {
    return JugglingMath.computeGCD(b, a % b);
  }
}

/**
 * Computes the least common multiple of integers a and b, by making use of the
 * fact that LCM(a, b) * GCD(a, b) == a * b.
 * @param {!number} a an integer.
 * @param {!number} b an integer.
 * @return {!number} the LCM of a and b.
 */
JugglingMath.computeLCM = function(a, b) {
  assert(Math.round(a) == a);
  assert(Math.round(b) == b);
  assert(a >= 0);
  assert(b >= 0);
  var ret = a * b / JugglingMath.computeGCD(a, b);
  assert(Math.round(ret) == ret);
  return ret;
}

/**
 * Given a Path and a set of hand positions, compute the corresponding set of
 * Curves.
 * @param {!Path} path the path of an object.
 * @param {!Array.HandPositionRecord} handPositions the positions of the hands
 * juggling the pattern containing the path.
 * @return {!CurveSet} the full set of curves.
 */
CurveSet.getCurveSetFromPath = function(path, handPositions) {
  var curves = [];
  var pathLength = path.pathLength;
  for (var index in path.descriptors) {
    var descriptor = path.descriptors[index];
    var curve = descriptor.generateCurve(handPositions);
    assert(!curves[curve.startTime]);
    assert(curve.startTime < pathLength);
    curves[curve.startTime] = curve;
  }
  return new CurveSet(pathLength, curves);
}

/**
 * Given a set of Paths and a set of hand positions, compute the corresponding
 * CurveSets.
 * @param {!Array.Path} paths the paths of a number of objects.
 * @param {!Array.HandPositionRecord} handPositions the positions of the hands
 * juggling the pattern containing the paths.
 * @return {!Array.CurveSet} the CurveSets.
 */
CurveSet.getCurveSetsFromPaths = function(paths, handPositions) {
  var curveSets = [];
  for (var index in paths) {
    var path = paths[index];
    curveSets[index] = CurveSet.getCurveSetFromPath(path, handPositions);
  }
  return curveSets;
}

/**
 * This is a temporary top-level calculation function that converts a standard
 * asynchronous siteswap, expressed as a string of digits, into a full
 * ready-to-animate set of CurveSets.  Later on we'll be using an interface that
 * can create a richer set of patterns than those expressable in the traditional
 * string-of-ints format.
 * @param {!String} patternString the siteswap.
 * @param {!number} numHands the number of hands to use for the pattern.
 * @param {!String} style how to space the hands ["pairs" or "even"].
 * @return {!Object} a fully-analyzed pattern as CurveSets and associated data.
 */
function computeFullPatternFromString(patternString, numHands, style) {
  var patternAsStrings = patternString.split(/[ ,]+ */);
  var patternSegment = [];
  for (var index in patternAsStrings) {
    if (patternAsStrings[index]) {  // Beware extra whitespace at the ends.
      patternSegment.push(parseInt(patternAsStrings[index]));
    }
  }
  var pattern = [];
  // Now expand the pattern out to the length of the LCM of pattern length and
  // number of hands, so that each throw gets done in each of its incarnations.
  var multiple = JugglingMath.computeLCM(patternSegment.length, numHands) /
      patternSegment.length;
  for (var i = 0; i < multiple; ++i) {
    pattern = pattern.concat(patternSegment);
  }

  var fullPattern = expandPattern(pattern, numHands);
  var patternLength = fullPattern[0].length;

  var ballPaths = generateBallPaths(fullPattern);
  var handPaths = generateHandPaths(ballPaths, numHands, patternLength);

  var handPositions = computeHandPositions(numHands, style);
  var ballCurveSets = CurveSet.getCurveSetsFromPaths(ballPaths, handPositions);
  var handCurveSets = CurveSet.getCurveSetsFromPaths(handPaths, handPositions);

  // Find the LCM of all the curveSet durations.  This will be the length of the
  // fully-expanded queue.  We could expand to this before computing the
  // CurveSets, but this way's probably just a little cheaper.
  var lcmDuration = 1;
  for (var i in ballCurveSets) {
    var duration = ballCurveSets[i].duration;
    if (duration > lcmDuration || lcmDuration % duration) {
      lcmDuration = JugglingMath.computeLCM(lcmDuration, duration);
    }
  }
  for (var i in handCurveSets) {
    var duration = handCurveSets[i].duration;
    if (duration > lcmDuration || lcmDuration % duration) {
      lcmDuration = JugglingMath.computeLCM(lcmDuration, duration);
    }
  }
  return {
    numBalls: ballPaths.length,
    numHands: handPaths.length,
    duration: lcmDuration,
    handCurveSets: handCurveSets,
    ballCurveSets: ballCurveSets
  }
}