1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
|
/*
* Copyright 2009, Google Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// This file contains the serializer code for binary objects:
// Buffer, Curve, Skin...
#include <vector>
#include "core/cross/buffer.h"
#include "core/cross/curve.h"
#include "core/cross/error.h"
#include "core/cross/skin.h"
#include "import/cross/memory_buffer.h"
#include "import/cross/memory_stream.h"
const size_t kSerializationIDSize = 4;
const size_t kVersionSize = sizeof(int32);
namespace o3d {
// |output| will be filled with the serialized data
void SerializeBuffer(const Buffer &buffer, MemoryBuffer<uint8> *output) {
// Determine the total size for the serialization data
const unsigned num_elements = buffer.num_elements();
const size_t num_fields = buffer.fields().size();
const size_t kNumFieldsSize = sizeof(int32);
const size_t kSingleFieldInfoSize = 2 * sizeof(uint8); // id / num_components
const size_t all_field_infos_size = num_fields * kSingleFieldInfoSize;
const size_t kNumElementsSize = sizeof(int32);
// Add up all the parts comprising the header
const size_t header_size = kSerializationIDSize +
kVersionSize +
kNumFieldsSize +
all_field_infos_size +
kNumElementsSize;
const size_t data_size = buffer.GetSizeInBytes();
const size_t total_size = header_size + data_size;
output->Resize(total_size);
MemoryWriteStream stream(*output, total_size);
// write out serialization ID for buffer
stream.Write(Buffer::kSerializationID, 4);
// write out version
stream.WriteLittleEndianInt32(1);
// write out number of fields
stream.WriteLittleEndianInt32(static_cast<int32>(num_fields));
// Write out the specification for the fields
for (size_t i = 0; i < num_fields; ++i) {
const Field &field = *buffer.fields()[i];
// Determine the FIELDID code we need to write out
// Start out "unknown" until we determine the class
uint8 field_id = Field::FIELDID_UNKNOWN;
if (field.IsA(FloatField::GetApparentClass())) {
field_id = Field::FIELDID_FLOAT32;
} else if (field.IsA(UInt32Field::GetApparentClass())) {
field_id = Field::FIELDID_UINT32;
} else if (field.IsA(UByteNField::GetApparentClass())) {
field_id = Field::FIELDID_BYTE;
} else {
O3D_ERROR(buffer.service_locator()) << "illegal buffer field";
return;
}
stream.WriteByte(field_id);
stream.WriteByte(field.num_components());
}
// Write out the number of elements
stream.WriteLittleEndianUInt32(num_elements);
// Make note of stream position at end of header
size_t data_start_position = stream.GetStreamPosition();
// Write out the data for each field
// Write out the specification for the fields
for (size_t i = 0; i < num_fields; ++i) {
const Field &field = *buffer.fields()[i];
MemoryBuffer<uint8> field_data(field.size() * num_elements);
uint8 *destination = field_data;
// Figure out what type of field it is, and get the data
// appropriately
size_t nitems = num_elements * field.num_components();
if (field.IsA(FloatField::GetApparentClass())) {
float *float_destination = reinterpret_cast<float*>(destination);
field.GetAsFloats(0,
float_destination,
field.num_components(),
num_elements);
// Write out as little endian float32
for (size_t i = 0; i < nitems; ++i) {
stream.WriteLittleEndianFloat32(float_destination[i]);
}
} else if (field.IsA(UInt32Field::GetApparentClass())) {
const UInt32Field &int_field = static_cast<const UInt32Field&>(field);
uint32 *int_destination = reinterpret_cast<uint32*>(destination);
int_field.GetAsUInt32s(0,
int_destination,
field.num_components(),
num_elements);
// Write out as little endian int32
for (size_t i = 0; i < nitems; ++i) {
stream.WriteLittleEndianInt32(int_destination[i]);
}
} else if (field.IsA(UByteNField::GetApparentClass())) {
const UByteNField &byte_field = static_cast<const UByteNField&>(field);
uint8 *byte_destination = reinterpret_cast<uint8*>(destination);
byte_field.GetAsUByteNs(0,
byte_destination,
field.num_components(),
num_elements);
// Write out the bytes
stream.Write(byte_destination, nitems);
}
}
if (stream.GetStreamPosition() != total_size) {
O3D_ERROR(buffer.service_locator()) << "error in serializing buffer";
return;
}
}
// |output| will be filled with the serialized data
void SerializeCurve(const Curve &curve, MemoryBuffer<uint8> *output) {
const size_t num_keys = const_cast<Curve&>(curve).keys().size();
// Bezier entry size is biggest, so compute kKeyEntryMaxSize based on it
const size_t kFloat2Size = 2 * sizeof(float);
const size_t kKeyEntryMaxSize =
sizeof(uint8) + 2 * sizeof(float) + 2 * kFloat2Size;
const size_t key_data_max_size = num_keys * kKeyEntryMaxSize;
const size_t max_total_size =
kSerializationIDSize + kVersionSize + key_data_max_size;
// Allocate a buffer which is large enough to hold the serialized data
// It may be larger than the actual size required. It will be resized
// to the exact size at the end
output->Resize(max_total_size);
MemoryWriteStream stream(*output, max_total_size);
// write out serialization ID for curve
stream.Write(Curve::kSerializationID, 4);
// write out version
stream.WriteLittleEndianInt32(1);
for (size_t i = 0; i < num_keys; ++i) {
const CurveKey &key = *curve.GetKey(i);
// determine the KeyType based on the key's class
if (key.IsA(StepCurveKey::GetApparentClass())) {
stream.WriteByte(CurveKey::TYPE_STEP);
stream.WriteLittleEndianFloat32(key.input());
stream.WriteLittleEndianFloat32(key.output());
} else if (key.IsA(LinearCurveKey::GetApparentClass())) {
stream.WriteByte(CurveKey::TYPE_LINEAR);
stream.WriteLittleEndianFloat32(key.input());
stream.WriteLittleEndianFloat32(key.output());
} else if (key.IsA(BezierCurveKey::GetApparentClass())) {
const BezierCurveKey &bezier_key =
static_cast<const BezierCurveKey&>(key);
stream.WriteByte(CurveKey::TYPE_BEZIER);
stream.WriteLittleEndianFloat32(bezier_key.input());
stream.WriteLittleEndianFloat32(bezier_key.output());
stream.WriteLittleEndianFloat32(bezier_key.in_tangent().getX());
stream.WriteLittleEndianFloat32(bezier_key.in_tangent().getY());
stream.WriteLittleEndianFloat32(bezier_key.out_tangent().getX());
stream.WriteLittleEndianFloat32(bezier_key.out_tangent().getY());
} else {
O3D_ERROR(curve.service_locator()) << "error in serializing curve";
return;
}
}
// Make note of total amount of data written and set the buffer to this
// exact size
size_t total_size = stream.GetStreamPosition();
output->Resize(total_size);
}
// |output| will be filled with the serialized data
void SerializeSkin(const Skin &skin, MemoryBuffer<uint8> *output) {
const Skin::InfluencesArray &influences_array = skin.influences();
const size_t influences_array_size = influences_array.size();
// Count up total number of individual influences
size_t total_influence_count = 0;
for (size_t i = 0; i < influences_array_size; ++i) {
total_influence_count += influences_array[i].size();
}
const size_t kInfluenceSize = sizeof(uint32) + sizeof(float);
const size_t total_size = kSerializationIDSize +
kVersionSize +
influences_array_size * sizeof(uint32) +
total_influence_count * kInfluenceSize;
// Allocate a buffer to hold the serialized data
output->Resize(total_size);
MemoryWriteStream stream(*output, total_size);
// write out serialization ID for skin
stream.Write(Skin::kSerializationID, 4);
// write out version
stream.WriteLittleEndianInt32(1);
for (size_t i = 0; i < influences_array_size; ++i) {
const Skin::Influences &influences = influences_array[i];
// Write the influence count for this Influences object
size_t influence_count = influences.size();
stream.WriteLittleEndianInt32(static_cast<int32>(influence_count));
for (size_t j = 0; j < influence_count; ++j) {
const Skin::Influence &influence = influences[j];
stream.WriteLittleEndianInt32(influence.matrix_index);
stream.WriteLittleEndianFloat32(influence.weight);
}
}
}
} // namespace o3d
|