1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
|
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <cmath>
#include <limits>
#include "ppapi/c/pp_errors.h"
#include "ppapi/cpp/audio.h"
#include "ppapi/cpp/audio_config.h"
#include "ppapi/cpp/completion_callback.h"
#include "ppapi/cpp/instance.h"
#include "ppapi/cpp/module.h"
// Separate left and right frequency to make sure we didn't swap L & R.
// Sounds pretty horrible, though...
const double frequency_l = 400;
const double frequency_r = 1000;
// This sample frequency is guaranteed to work.
const PP_AudioSampleRate sample_frequency = PP_AUDIOSAMPLERATE_44100;
const uint32_t sample_count = 4096;
uint32_t obtained_sample_count = 0;
const double kPi = 3.141592653589;
const double kTwoPi = 2.0 * kPi;
class MyInstance : public pp::Instance {
public:
explicit MyInstance(PP_Instance instance)
: pp::Instance(instance),
audio_wave_l_(0.0),
audio_wave_r_(0.0) {
}
virtual bool Init(uint32_t argc, const char* argn[], const char* argv[]) {
pp::AudioConfig config;
obtained_sample_count = pp::AudioConfig::RecommendSampleFrameCount(
sample_frequency, sample_count);
config = pp::AudioConfig(this, sample_frequency, obtained_sample_count);
audio_ = pp::Audio(this, config, SineWaveCallback, this);
return audio_.StartPlayback();
}
private:
static void SineWaveCallback(void* samples, uint32_t num_bytes, void* thiz) {
const double delta_l = kTwoPi * frequency_l / sample_frequency;
const double delta_r = kTwoPi * frequency_r / sample_frequency;
// Use per channel audio wave value to avoid clicks on buffer boundries.
double wave_l = reinterpret_cast<MyInstance*>(thiz)->audio_wave_l_;
double wave_r = reinterpret_cast<MyInstance*>(thiz)->audio_wave_r_;
const int16_t max_int16 = std::numeric_limits<int16_t>::max();
int16_t* buf = reinterpret_cast<int16_t*>(samples);
for (size_t sample = 0; sample < obtained_sample_count; ++sample) {
*buf++ = static_cast<int16_t>(sin(wave_l) * max_int16);
*buf++ = static_cast<int16_t>(sin(wave_r) * max_int16);
// Add delta, keep within -kTwoPi..kTwoPi to preserve precision.
wave_l += delta_l;
if (wave_l > kTwoPi)
wave_l -= kTwoPi * 2.0;
wave_r += delta_r;
if (wave_r > kTwoPi)
wave_r -= kTwoPi * 2.0;
}
// Store current value to use as starting point for next callback.
reinterpret_cast<MyInstance*>(thiz)->audio_wave_l_ = wave_l;
reinterpret_cast<MyInstance*>(thiz)->audio_wave_r_ = wave_r;
}
// Audio resource. Allocated in Init(), freed on destruction.
pp::Audio audio_;
// Current audio wave position, used to prevent sine wave skips
// on buffer boundaries.
double audio_wave_l_;
double audio_wave_r_;
};
class MyModule : public pp::Module {
public:
// Override CreateInstance to create your customized Instance object.
virtual pp::Instance* CreateInstance(PP_Instance instance) {
return new MyInstance(instance);
}
};
namespace pp {
// Factory function for your specialization of the Module object.
Module* CreateModule() {
return new MyModule();
}
} // namespace pp
|