1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
|
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef PPAPI_PROXY_SERIALIZED_VAR_H_
#define PPAPI_PROXY_SERIALIZED_VAR_H_
#include <string>
#include <vector>
#include "base/basictypes.h"
#include "base/memory/ref_counted.h"
#include "ppapi/c/pp_var.h"
#include "ppapi/proxy/ppapi_proxy_export.h"
namespace IPC {
class Message;
}
namespace ppapi {
namespace proxy {
class Dispatcher;
class VarSerializationRules;
// This class encapsulates a var so that we can serialize and deserialize it.
// The problem is that for strings, serialization and deserialization requires
// knowledge from outside about how to get at or create a string. So this
// object groups the var with a dispatcher so that string values can be set or
// gotten.
//
// Declare IPC messages as using this type, but don't use it directly (it has
// no useful public methods). Instead, instantiate one of the helper classes
// below which are conveniently named for each use case to prevent screwups.
//
// Design background
// -----------------
// This is sadly super complicated. The IPC system needs a consistent type to
// use for sending and receiving vars (this is a SerializedVar). But there are
// different combinations of reference counting for sending and receiving
// objects and for dealing with strings
//
// This makes SerializedVar complicated and easy to mess up. To make it
// reasonable to use, all functions are protected and there are use-specific
// classes that each encapsulate exactly one type of use in a way that typically
// won't compile if you do the wrong thing.
//
// The IPC system is designed to pass things around and will make copies in
// some cases, so our system must be designed so that this stuff will work.
// This is challenging when the SerializedVar must do some cleanup after the
// message is sent. To work around this, we create an inner class using a
// linked_ptr so all copies of a SerializedVar can share and we can guarantee
// that the actual data will get cleaned up on shutdown.
//
// Constness
// ---------
// SerializedVar basically doesn't support const. Everything is mutable and
// most functions are declared const. This unfortunateness is because of the
// way the IPC system works. When deserializing, it will have a const
// SerializedVar in a Tuple and this will be given to the function. We kind of
// want to modify that to convert strings and do refcounting.
//
// The helper classes used for accessing the SerializedVar have more reasonable
// behavior and will enforce that you don't do stupid things.
class PPAPI_PROXY_EXPORT SerializedVar {
public:
SerializedVar();
~SerializedVar();
// Backend implementation for IPC::ParamTraits<SerializedVar>.
void WriteToMessage(IPC::Message* m) const {
inner_->WriteToMessage(m);
}
bool ReadFromMessage(const IPC::Message* m, void** iter) {
return inner_->ReadFromMessage(m, iter);
}
protected:
friend class SerializedVarReceiveInput;
friend class SerializedVarReturnValue;
friend class SerializedVarOutParam;
friend class SerializedVarSendInput;
friend class SerializedVarTestConstructor;
friend class SerializedVarVectorReceiveInput;
class PPAPI_PROXY_EXPORT Inner : public base::RefCounted<Inner> {
public:
Inner();
Inner(VarSerializationRules* serialization_rules);
Inner(VarSerializationRules* serialization_rules, const PP_Var& var);
~Inner();
VarSerializationRules* serialization_rules() {
return serialization_rules_;
}
void set_serialization_rules(VarSerializationRules* serialization_rules) {
serialization_rules_ = serialization_rules;
}
// See outer class's declarations above.
PP_Var GetVar() const;
PP_Var GetIncompleteVar() const;
void SetVar(PP_Var var);
const std::string& GetString() const;
std::string* GetStringPtr();
// For the SerializedVarTestConstructor, this writes the Var value as if
// it was just received off the wire, without any serialization rules.
void ForceSetVarValueForTest(PP_Var value);
void ForceSetStringValueForTest(const std::string& str);
void WriteToMessage(IPC::Message* m) const;
bool ReadFromMessage(const IPC::Message* m, void** iter);
// Sets the cleanup mode. See the CleanupMode enum below. These functions
// are not just a simple setter in order to require that the appropriate
// data is set along with the corresponding mode.
void SetCleanupModeToEndSendPassRef(Dispatcher* dispatcher);
void SetCleanupModeToEndReceiveCallerOwned();
private:
enum CleanupMode {
// The serialized var won't do anything special in the destructor
// (default).
CLEANUP_NONE,
// The serialized var will call EndSendPassRef in the destructor.
END_SEND_PASS_REF,
// The serialized var will call EndReceiveCallerOwned in the destructor.
END_RECEIVE_CALLER_OWNED
};
// Rules for serializing and deserializing vars for this process type.
// This may be NULL, but must be set before trying to serialize to IPC when
// sending, or before converting back to a PP_Var when receiving.
VarSerializationRules* serialization_rules_;
// If this is set to VARTYPE_STRING and the 'value.id' is 0, then the
// string_value_ contains the string. This means that the caller hasn't
// called Deserialize with a valid Dispatcher yet, which is how we can
// convert the serialized string value to a PP_Var string ID.
//
// This var may not be complete until the serialization rules are set when
// reading from IPC since we'll need that to convert the string_value to
// a string ID. Before this, the as_id will be 0 for VARTYPE_STRING.
PP_Var var_;
// Holds the literal string value to/from IPC. This will be valid if the
// var_ is VARTYPE_STRING.
std::string string_value_;
CleanupMode cleanup_mode_;
// The dispatcher saved for the call to EndSendPassRef for the cleanup.
// This is only valid when cleanup_mode == END_SEND_PASS_REF.
Dispatcher* dispatcher_for_end_send_pass_ref_;
#ifndef NDEBUG
// When being sent or received over IPC, we should only be serialized or
// deserialized once. These flags help us assert this is true.
mutable bool has_been_serialized_;
mutable bool has_been_deserialized_;
#endif
DISALLOW_COPY_AND_ASSIGN(Inner);
};
SerializedVar(VarSerializationRules* serialization_rules);
SerializedVar(VarSerializationRules* serialization, const PP_Var& var);
mutable scoped_refptr<Inner> inner_;
};
// Helpers for message sending side --------------------------------------------
// For sending a value to the remote side.
//
// Example for API:
// void MyFunction(PP_Var)
// IPC message:
// IPC_MESSAGE_ROUTED1(MyFunction, SerializedVar);
// Sender would be:
// void MyFunctionProxy(PP_Var param) {
// Send(new MyFunctionMsg(SerializedVarSendInput(dispatcher, param));
// }
class PPAPI_PROXY_EXPORT SerializedVarSendInput : public SerializedVar {
public:
SerializedVarSendInput(Dispatcher* dispatcher, const PP_Var& var);
// Helper function for serializing a vector of input vars for serialization.
static void ConvertVector(Dispatcher* dispatcher,
const PP_Var* input,
size_t input_count,
std::vector<SerializedVar>* output);
private:
// Disallow the empty constructor, but keep the default copy constructor
// which is required to send the object to the IPC system.
SerializedVarSendInput();
};
// For the calling side of a function returning a var. The sending side uses
// SerializedVarReturnValue.
//
// Example for API:
// PP_Var MyFunction()
// IPC message:
// IPC_SYNC_MESSAGE_ROUTED0_1(MyFunction, SerializedVar);
// Message handler would be:
// PP_Var MyFunctionProxy() {
// ReceiveSerializedVarReturnValue result;
// Send(new MyFunctionMsg(&result));
// return result.Return(dispatcher());
// }
class PPAPI_PROXY_EXPORT ReceiveSerializedVarReturnValue
: public SerializedVar {
public:
// Note that we can't set the dispatcher in the constructor because the
// data will be overridden when the return value is set. This constructor is
// normally used in the pattern above (operator= will be implicitly invoked
// when the sync message writes the output values).
ReceiveSerializedVarReturnValue();
// This constructor can be used when deserializing manually. This is useful
// when you're getting strings "returned" via a struct and need to manually
// get the PP_Vars out. In this case just do:
// ReceiveSerializedVarReturnValue(serialized).Return(dispatcher);
explicit ReceiveSerializedVarReturnValue(const SerializedVar& serialized);
PP_Var Return(Dispatcher* dispatcher);
private:
DISALLOW_COPY_AND_ASSIGN(ReceiveSerializedVarReturnValue);
};
// Example for API:
// "void MyFunction(PP_Var* exception);"
// IPC message:
// IPC_SYNC_MESSAGE_ROUTED0_1(MyFunction, SerializedVar);
// Message handler would be:
// void OnMsgMyFunction(PP_Var* exception) {
// ReceiveSerializedException se(dispatcher(), exception)
// Send(new PpapiHostMsg_Foo(&se));
// }
class PPAPI_PROXY_EXPORT ReceiveSerializedException : public SerializedVar {
public:
ReceiveSerializedException(Dispatcher* dispatcher, PP_Var* exception);
~ReceiveSerializedException();
// Returns true if the exception passed in the constructor is set. Check
// this before actually issuing the IPC.
bool IsThrown() const;
private:
Dispatcher* dispatcher_;
// The input/output exception we're wrapping. May be NULL.
PP_Var* exception_;
DISALLOW_IMPLICIT_CONSTRUCTORS(ReceiveSerializedException);
};
// Helper class for when we're returning a vector of Vars. When it goes out
// of scope it will automatically convert the vector filled by the IPC layer
// into the array specified by the constructor params.
//
// Example for API:
// "void MyFunction(uint32_t* count, PP_Var** vars);"
// IPC message:
// IPC_SYNC_MESSAGE_ROUTED0_1(MyFunction, std::vector<SerializedVar>);
// Proxy function:
// void MyFunction(uint32_t* count, PP_Var** vars) {
// ReceiveSerializedVarVectorOutParam vect(dispatcher, count, vars);
// Send(new MyMsg(vect.OutParam()));
// }
class PPAPI_PROXY_EXPORT ReceiveSerializedVarVectorOutParam {
public:
ReceiveSerializedVarVectorOutParam(Dispatcher* dispatcher,
uint32_t* output_count,
PP_Var** output);
~ReceiveSerializedVarVectorOutParam();
std::vector<SerializedVar>* OutParam();
private:
Dispatcher* dispatcher_;
uint32_t* output_count_;
PP_Var** output_;
std::vector<SerializedVar> vector_;
DISALLOW_IMPLICIT_CONSTRUCTORS(ReceiveSerializedVarVectorOutParam);
};
// Helpers for message receiving side ------------------------------------------
// For receiving a value from the remote side.
//
// Example for API:
// void MyFunction(PP_Var)
// IPC message:
// IPC_MESSAGE_ROUTED1(MyFunction, SerializedVar);
// Message handler would be:
// void OnMsgMyFunction(SerializedVarReceiveInput param) {
// MyFunction(param.Get());
// }
class PPAPI_PROXY_EXPORT SerializedVarReceiveInput {
public:
// We rely on the implicit constructor here since the IPC layer will call
// us with a SerializedVar. Pass this object by value, the copy constructor
// will pass along the pointer (as cheap as passing a pointer arg).
SerializedVarReceiveInput(const SerializedVar& serialized);
~SerializedVarReceiveInput();
PP_Var Get(Dispatcher* dispatcher);
private:
const SerializedVar& serialized_;
// Since the SerializedVar is const, we can't set its dispatcher (which is
// OK since we don't need to). But since we need it for our own uses, we
// track it here. Will be NULL before Get() is called.
Dispatcher* dispatcher_;
PP_Var var_;
};
// For receiving an input vector of vars from the remote side.
//
// Example:
// OnMsgMyFunction(SerializedVarVectorReceiveInput vector) {
// uint32_t size;
// PP_Var* array = vector.Get(dispatcher, &size);
// MyFunction(size, array);
// }
class PPAPI_PROXY_EXPORT SerializedVarVectorReceiveInput {
public:
SerializedVarVectorReceiveInput(const std::vector<SerializedVar>& serialized);
~SerializedVarVectorReceiveInput();
// Only call Get() once. It will return a pointer to the converted array and
// place the array size in the out param. Will return NULL when the array is
// empty.
PP_Var* Get(Dispatcher* dispatcher, uint32_t* array_size);
private:
const std::vector<SerializedVar>& serialized_;
// Filled by Get().
std::vector<PP_Var> deserialized_;
};
// For the receiving side of a function returning a var. The calling side uses
// ReceiveSerializedVarReturnValue.
//
// Example for API:
// PP_Var MyFunction()
// IPC message:
// IPC_SYNC_MESSAGE_ROUTED0_1(MyFunction, SerializedVar);
// Message handler would be:
// void OnMsgMyFunction(SerializedVarReturnValue result) {
// result.Return(dispatcher(), MyFunction());
// }
class PPAPI_PROXY_EXPORT SerializedVarReturnValue {
public:
// We rely on the implicit constructor here since the IPC layer will call
// us with a SerializedVar*. Pass this object by value, the copy constructor
// will pass along the pointer (as cheap as passing a pointer arg).
SerializedVarReturnValue(SerializedVar* serialized);
void Return(Dispatcher* dispatcher, const PP_Var& var);
// Helper function for code that doesn't use the pattern above, but gets
// a return value from the remote side via a struct. You can pass in the
// SerializedVar and a PP_Var will be created with return value semantics.
static SerializedVar Convert(Dispatcher* dispatcher, const PP_Var& var);
private:
SerializedVar* serialized_;
};
// For writing an out param to the remote side.
//
// Example for API:
// "void MyFunction(PP_Var* out);"
// IPC message:
// IPC_SYNC_MESSAGE_ROUTED0_1(MyFunction, SerializedVar);
// Message handler would be:
// void OnMsgMyFunction(SerializedVarOutParam out_param) {
// MyFunction(out_param.OutParam(dispatcher()));
// }
class PPAPI_PROXY_EXPORT SerializedVarOutParam {
public:
// We rely on the implicit constructor here since the IPC layer will call
// us with a SerializedVar*. Pass this object by value, the copy constructor
// will pass along the pointer (as cheap as passing a pointer arg).
SerializedVarOutParam(SerializedVar* serialized);
~SerializedVarOutParam();
// Call this function only once. The caller should write its result to the
// returned var pointer before this class goes out of scope. The var's
// initial value will be VARTYPE_UNDEFINED.
PP_Var* OutParam(Dispatcher* dispatcher);
private:
SerializedVar* serialized_;
// This is the value actually written by the code and returned by OutParam.
// We'll write this into serialized_ in our destructor.
PP_Var writable_var_;
Dispatcher* dispatcher_;
};
// For returning an array of PP_Vars to the other side and transferring
// ownership.
//
class PPAPI_PROXY_EXPORT SerializedVarVectorOutParam {
public:
SerializedVarVectorOutParam(std::vector<SerializedVar>* serialized);
~SerializedVarVectorOutParam();
uint32_t* CountOutParam() { return &count_; }
PP_Var** ArrayOutParam(Dispatcher* dispatcher);
private:
Dispatcher* dispatcher_;
std::vector<SerializedVar>* serialized_;
uint32_t count_;
PP_Var* array_;
};
// For tests that just want to construct a SerializedVar for giving it to one
// of the other classes. This emulates a SerializedVar just received over the
// wire from another process.
class PPAPI_PROXY_EXPORT SerializedVarTestConstructor : public SerializedVar {
public:
// For POD-types and objects.
explicit SerializedVarTestConstructor(const PP_Var& pod_var);
// For strings.
explicit SerializedVarTestConstructor(const std::string& str);
};
// For tests that want to read what's in a SerializedVar.
class PPAPI_PROXY_EXPORT SerializedVarTestReader : public SerializedVar {
public:
explicit SerializedVarTestReader(const SerializedVar& var);
// The "incomplete" var is the one sent over the wire. Strings and object
// IDs have not yet been converted, so this is the thing that tests will
// actually want to check.
PP_Var GetIncompleteVar() const { return inner_->GetIncompleteVar(); }
const std::string& GetString() const { return inner_->GetString(); }
};
} // namespace proxy
} // namespace ppapi
#endif // PPAPI_PROXY_SERIALIZED_VAR_H_
|