summaryrefslogtreecommitdiffstats
path: root/remoting/base/encoder_vp8.cc
blob: 83fbffea0814d4f3dd8a7d3fd17b6ab4add4594c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "remoting/base/encoder_vp8.h"

#include "base/logging.h"
#include "base/sys_info.h"
#include "media/base/yuv_convert.h"
#include "remoting/base/capture_data.h"
#include "remoting/base/util.h"
#include "remoting/proto/video.pb.h"

extern "C" {
#define VPX_CODEC_DISABLE_COMPAT 1
#include "third_party/libvpx/libvpx.h"
}

namespace {

// Defines the dimension of a macro block. This is used to compute the active
// map for the encoder.
const int kMacroBlockSize = 16;

}  // namespace remoting

namespace remoting {

EncoderVp8::EncoderVp8()
    : initialized_(false),
      codec_(NULL),
      image_(NULL),
      active_map_width_(0),
      active_map_height_(0),
      last_timestamp_(0),
      size_(SkISize::Make(0, 0)) {
}

EncoderVp8::~EncoderVp8() {
  Destroy();
}

void EncoderVp8::Destroy() {
  if (initialized_) {
    vpx_codec_err_t ret = vpx_codec_destroy(codec_.get());
    DCHECK(ret == VPX_CODEC_OK) << "Failed to destroy codec";
    initialized_ = false;
  }
}

bool EncoderVp8::Init(const SkISize& size) {
  Destroy();
  size_ = size;
  codec_.reset(new vpx_codec_ctx_t());
  image_.reset(new vpx_image_t());
  memset(image_.get(), 0, sizeof(vpx_image_t));

  image_->fmt = VPX_IMG_FMT_YV12;

  // libvpx seems to require both to be assigned.
  image_->d_w = size.width();
  image_->w = size.width();
  image_->d_h = size.height();
  image_->h = size.height();

  // Initialize active map.
  active_map_width_ = (size.width() + kMacroBlockSize - 1) / kMacroBlockSize;
  active_map_height_ = (size.height() + kMacroBlockSize - 1) / kMacroBlockSize;
  active_map_.reset(new uint8[active_map_width_ * active_map_height_]);

  // YUV image size is 1.5 times of a plane. Multiplication is performed first
  // to avoid rounding error.
  const int y_plane_size = size.width() * size.height();
  const int uv_width = (size.width() + 1) / 2;
  const int uv_height = (size.height() + 1) / 2;
  const int uv_plane_size = uv_width * uv_height;
  const int yuv_image_size = y_plane_size + uv_plane_size * 2;

  // libvpx may try to access memory after the buffer (it still
  // doesn't use it) - it copies the data in 16x16 blocks:
  // crbug.com/119633 . Here we workaround that problem by adding
  // padding at the end of the buffer. Overreading to U and V buffers
  // is safe so the padding is necessary only at the end.
  //
  // TODO(sergeyu): Remove this padding when the bug is fixed in libvpx.
  const int active_map_area = active_map_width_ * kMacroBlockSize *
      active_map_height_ * kMacroBlockSize;
  const int padding_size = active_map_area - y_plane_size;
  const int buffer_size = yuv_image_size + padding_size;

  yuv_image_.reset(new uint8[buffer_size]);

  // Reset image value to 128 so we just need to fill in the y plane.
  memset(yuv_image_.get(), 128, yuv_image_size);

  // Fill in the information for |image_|.
  unsigned char* image = reinterpret_cast<unsigned char*>(yuv_image_.get());
  image_->planes[0] = image;
  image_->planes[1] = image + y_plane_size;
  image_->planes[2] = image + y_plane_size + uv_plane_size;

  // In YV12 Y plane has full width, UV plane has half width because of
  // subsampling.
  image_->stride[0] = image_->w;
  image_->stride[1] = image_->w / 2;
  image_->stride[2] = image_->w / 2;

  vpx_codec_enc_cfg_t config;
  const vpx_codec_iface_t* algo = vpx_codec_vp8_cx();
  CHECK(algo);
  vpx_codec_err_t ret = vpx_codec_enc_config_default(algo, &config, 0);
  if (ret != VPX_CODEC_OK)
    return false;

  config.rc_target_bitrate = size.width() * size.height() *
      config.rc_target_bitrate / config.g_w / config.g_h;
  config.g_w = size.width();
  config.g_h = size.height();
  config.g_pass = VPX_RC_ONE_PASS;

  // Value of 2 means using the real time profile. This is basically a
  // redundant option since we explicitly select real time mode when doing
  // encoding.
  config.g_profile = 2;

  // Using 2 threads gives a great boost in performance for most systems with
  // adequate processing power. NB: Going to multiple threads on low end
  // windows systems can really hurt performance.
  // http://crbug.com/99179
  config.g_threads = (base::SysInfo::NumberOfProcessors() > 2) ? 2 : 1;
  config.rc_min_quantizer = 20;
  config.rc_max_quantizer = 30;
  config.g_timebase.num = 1;
  config.g_timebase.den = 20;

  if (vpx_codec_enc_init(codec_.get(), algo, &config, 0))
    return false;

  // Value of 16 will have the smallest CPU load. This turns off subpixel
  // motion search.
  if (vpx_codec_control(codec_.get(), VP8E_SET_CPUUSED, 16))
    return false;

  // Use the lowest level of noise sensitivity so as to spend less time
  // on motion estimation and inter-prediction mode.
  if (vpx_codec_control(codec_.get(), VP8E_SET_NOISE_SENSITIVITY, 0))
    return false;
  return true;
}

void EncoderVp8::PrepareImage(scoped_refptr<CaptureData> capture_data,
                              SkRegion* updated_region) {
  // Perform RGB->YUV conversion.
  CHECK_EQ(capture_data->pixel_format(), media::VideoFrame::RGB32)
    << "Only RGB32 is supported";

  const SkRegion& region = capture_data->dirty_region();
  if (region.isEmpty()) {
    updated_region->setEmpty();
    return;
  }

  // Align rectangles in the region, to avoid encoding artefacts.
  // Note that this also results in rectangles with even-aligned positions,
  // which is a requirement for some of the conversion routines to work.
  std::vector<SkIRect> updated_rects;
  for (SkRegion::Iterator r(region); !r.done(); r.next()) {
    updated_rects.push_back(AlignRect(r.rect()));
  }
  if (!updated_rects.empty()) {
    updated_region->setRects(&updated_rects[0], updated_rects.size());
  }

  // Clip to the screen again, in case it has non-aligned size.
  // Note that we round the screen down to even dimensions to satisfy the
  // limitations of some of the conversion routines.
  int even_width = RoundToTwosMultiple(image_->w);
  int even_height = RoundToTwosMultiple(image_->h);
  updated_region->op(SkRegion(SkIRect::MakeWH(even_width, even_height)),
                     SkRegion::kIntersect_Op);

  // Convert the updated region to YUV ready for encoding.
  const uint8* in = capture_data->data_planes().data[0];
  const int in_stride = capture_data->data_planes().strides[0];
  const int plane_size =
      capture_data->size().width() * capture_data->size().height();
  uint8* y_out = yuv_image_.get();
  uint8* u_out = yuv_image_.get() + plane_size;
  uint8* v_out = yuv_image_.get() + plane_size + plane_size / 4;
  const int y_stride = image_->stride[0];
  const int uv_stride = image_->stride[1];

  for (SkRegion::Iterator r(*updated_region); !r.done(); r.next()) {
    const SkIRect& rect = r.rect();
    ConvertRGB32ToYUVWithRect(
        in, y_out, u_out, v_out,
        rect.x(), rect.y(), rect.width(), rect.height(),
        in_stride, y_stride, uv_stride);
  }
}

void EncoderVp8::PrepareActiveMap(const SkRegion& updated_region) {
  // Clear active map first.
  memset(active_map_.get(), 0, active_map_width_ * active_map_height_);

  // Mark updated areas active.
  for (SkRegion::Iterator r(updated_region); !r.done(); r.next()) {
    const SkIRect& rect = r.rect();
    int left = rect.left() / kMacroBlockSize;
    int right = (rect.right() - 1) / kMacroBlockSize;
    int top = rect.top() / kMacroBlockSize;
    int bottom = (rect.bottom() - 1) / kMacroBlockSize;
    CHECK(right < active_map_width_);
    CHECK(bottom < active_map_height_);

    uint8* map = active_map_.get() + top * active_map_width_;
    for (int y = top; y <= bottom; ++y) {
      for (int x = left; x <= right; ++x)
        map[x] = 1;
      map += active_map_width_;
    }
  }
}

void EncoderVp8::Encode(scoped_refptr<CaptureData> capture_data,
                        bool key_frame,
                        const DataAvailableCallback& data_available_callback) {
  if (!initialized_ || (capture_data->size() != size_)) {
    bool ret = Init(capture_data->size());
    // TODO(hclam): Handle error better.
    CHECK(ret) << "Initialization of encoder failed";
    initialized_ = ret;
  }

  // Convert the updated capture data ready for encode.
  SkRegion updated_region;
  PrepareImage(capture_data, &updated_region);

  // Update active map based on updated region.
  PrepareActiveMap(updated_region);

  // Apply active map to the encoder.
  vpx_active_map_t act_map;
  act_map.rows = active_map_height_;
  act_map.cols = active_map_width_;
  act_map.active_map = active_map_.get();
  if (vpx_codec_control(codec_.get(), VP8E_SET_ACTIVEMAP, &act_map)) {
    LOG(ERROR) << "Unable to apply active map";
  }

  // Do the actual encoding.
  vpx_codec_err_t ret = vpx_codec_encode(codec_.get(), image_.get(),
                                         last_timestamp_,
                                         1, 0, VPX_DL_REALTIME);
  DCHECK_EQ(ret, VPX_CODEC_OK)
      << "Encoding error: " << vpx_codec_err_to_string(ret) << "\n"
      << "Details: " << vpx_codec_error(codec_.get()) << "\n"
      << vpx_codec_error_detail(codec_.get());

  // TODO(hclam): Apply the proper timestamp here.
  last_timestamp_ += 50;

  // Read the encoded data.
  vpx_codec_iter_t iter = NULL;
  bool got_data = false;

  // TODO(hclam): Make sure we get exactly one frame from the packet.
  // TODO(hclam): We should provide the output buffer to avoid one copy.
  scoped_ptr<VideoPacket> packet(new VideoPacket());

  while (!got_data) {
    const vpx_codec_cx_pkt_t* vpx_packet = vpx_codec_get_cx_data(codec_.get(),
                                                                 &iter);
    if (!vpx_packet)
      continue;

    switch (vpx_packet->kind) {
      case VPX_CODEC_CX_FRAME_PKT:
        got_data = true;
        // TODO(sergeyu): Split each frame into multiple partitions.
        packet->set_data(vpx_packet->data.frame.buf, vpx_packet->data.frame.sz);
        break;
      default:
        break;
    }
  }

  // Construct the VideoPacket message.
  packet->mutable_format()->set_encoding(VideoPacketFormat::ENCODING_VP8);
  packet->set_flags(VideoPacket::FIRST_PACKET | VideoPacket::LAST_PACKET |
                     VideoPacket::LAST_PARTITION);
  packet->mutable_format()->set_screen_width(capture_data->size().width());
  packet->mutable_format()->set_screen_height(capture_data->size().height());
  packet->set_capture_time_ms(capture_data->capture_time_ms());
  packet->set_client_sequence_number(capture_data->client_sequence_number());
  SkIPoint dpi(capture_data->dpi());
  if (dpi.x())
    packet->mutable_format()->set_x_dpi(dpi.x());
  if (dpi.y())
    packet->mutable_format()->set_y_dpi(dpi.y());
  for (SkRegion::Iterator r(updated_region); !r.done(); r.next()) {
    Rect* rect = packet->add_dirty_rects();
    rect->set_x(r.rect().x());
    rect->set_y(r.rect().y());
    rect->set_width(r.rect().width());
    rect->set_height(r.rect().height());
  }

  data_available_callback.Run(packet.Pass());
}

}  // namespace remoting