1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
|
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <string>
#include "base/scoped_ptr.h"
#include "base/stl_util-inl.h"
#include "remoting/proto/internal.pb.h"
#include "remoting/protocol/message_decoder.h"
#include "remoting/protocol/util.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace remoting {
static const int kTestKey = 142;
static void AppendMessage(const ChromotingClientMessage& msg,
std::string* buffer) {
// Contains one encoded message.
scoped_refptr<net::IOBufferWithSize> encoded_msg;
encoded_msg = SerializeAndFrameMessage(msg);
buffer->append(encoded_msg->data(), encoded_msg->size());
}
// Construct and prepare data in the |output_stream|.
static void PrepareData(uint8** buffer, int* size) {
// Contains all encoded messages.
std::string encoded_data;
ChromotingClientMessage msg;
// Then append 10 update sequences to the data.
for (int i = 0; i < 10; ++i) {
msg.mutable_key_event()->set_key(kTestKey + i);
msg.mutable_key_event()->set_pressed((i % 2) != 0);
AppendMessage(msg, &encoded_data);
msg.Clear();
}
*size = encoded_data.length();
*buffer = new uint8[*size];
memcpy(*buffer, encoded_data.c_str(), *size);
}
void SimulateReadSequence(const int read_sequence[], int sequence_size) {
// Prepare encoded data for testing.
int size;
uint8* test_data;
PrepareData(&test_data, &size);
scoped_array<uint8> memory_deleter(test_data);
// Then simulate using MessageDecoder to decode variable
// size of encoded data.
// The first thing to do is to generate a variable size of data. This is done
// by iterating the following array for read sizes.
MessageDecoder decoder;
// Then feed the protocol decoder using the above generated data and the
// read pattern.
std::list<ChromotingClientMessage*> message_list;
for (int i = 0; i < size;) {
// First generate the amount to feed the decoder.
int read = std::min(size - i, read_sequence[i % sequence_size]);
// And then prepare an IOBuffer for feeding it.
scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(read));
memcpy(buffer->data(), test_data + i, read);
decoder.ParseMessages(buffer, read, &message_list);
i += read;
}
// Then verify the decoded messages.
EXPECT_EQ(10u, message_list.size());
int index = 0;
for (std::list<ChromotingClientMessage*>::iterator it =
message_list.begin();
it != message_list.end(); ++it) {
ChromotingClientMessage* message = *it;
// Partial update stream.
EXPECT_TRUE(message->has_key_event());
// TODO(sergeyu): Don't use index here. Instead store the expected values
// in an array.
EXPECT_EQ(kTestKey + index, message->key_event().key());
EXPECT_EQ((index % 2) != 0, message->key_event().pressed());
++index;
}
STLDeleteElements(&message_list);
}
TEST(MessageDecoderTest, SmallReads) {
const int kReads[] = {1, 2, 3, 1};
SimulateReadSequence(kReads, arraysize(kReads));
}
TEST(MessageDecoderTest, LargeReads) {
const int kReads[] = {50, 50, 5};
SimulateReadSequence(kReads, arraysize(kReads));
}
TEST(MessageDecoderTest, EmptyReads) {
const int kReads[] = {4, 0, 50, 0};
SimulateReadSequence(kReads, arraysize(kReads));
}
} // namespace remoting
|