1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "sandbox/linux/seccomp-bpf/sandbox_bpf.h"
// Some headers on Android are missing cdefs: crbug.com/172337.
// (We can't use OS_ANDROID here since build_config.h is not included).
#if defined(ANDROID)
#include <sys/cdefs.h>
#endif
#include <errno.h>
#include <fcntl.h>
#include <string.h>
#include <sys/prctl.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>
#include "base/compiler_specific.h"
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "base/posix/eintr_wrapper.h"
#include "sandbox/linux/seccomp-bpf/codegen.h"
#include "sandbox/linux/seccomp-bpf/sandbox_bpf_policy.h"
#include "sandbox/linux/seccomp-bpf/syscall.h"
#include "sandbox/linux/seccomp-bpf/syscall_iterator.h"
#include "sandbox/linux/seccomp-bpf/verifier.h"
namespace playground2 {
namespace {
const int kExpectedExitCode = 100;
int popcount(uint32_t x) {
return __builtin_popcount(x);
}
#if !defined(NDEBUG)
void WriteFailedStderrSetupMessage(int out_fd) {
const char* error_string = strerror(errno);
static const char msg[] =
"You have reproduced a puzzling issue.\n"
"Please, report to crbug.com/152530!\n"
"Failed to set up stderr: ";
if (HANDLE_EINTR(write(out_fd, msg, sizeof(msg) - 1)) > 0 && error_string &&
HANDLE_EINTR(write(out_fd, error_string, strlen(error_string))) > 0 &&
HANDLE_EINTR(write(out_fd, "\n", 1))) {
}
}
#endif // !defined(NDEBUG)
// We define a really simple sandbox policy. It is just good enough for us
// to tell that the sandbox has actually been activated.
ErrorCode ProbeEvaluator(Sandbox*, int sysnum, void*) __attribute__((const));
ErrorCode ProbeEvaluator(Sandbox*, int sysnum, void*) {
switch (sysnum) {
case __NR_getpid:
// Return EPERM so that we can check that the filter actually ran.
return ErrorCode(EPERM);
case __NR_exit_group:
// Allow exit() with a non-default return code.
return ErrorCode(ErrorCode::ERR_ALLOWED);
default:
// Make everything else fail in an easily recognizable way.
return ErrorCode(EINVAL);
}
}
void ProbeProcess(void) {
if (syscall(__NR_getpid) < 0 && errno == EPERM) {
syscall(__NR_exit_group, static_cast<intptr_t>(kExpectedExitCode));
}
}
ErrorCode AllowAllEvaluator(Sandbox*, int sysnum, void*) {
if (!Sandbox::IsValidSyscallNumber(sysnum)) {
return ErrorCode(ENOSYS);
}
return ErrorCode(ErrorCode::ERR_ALLOWED);
}
void TryVsyscallProcess(void) {
time_t current_time;
// time() is implemented as a vsyscall. With an older glibc, with
// vsyscall=emulate and some versions of the seccomp BPF patch
// we may get SIGKILL-ed. Detect this!
if (time(¤t_time) != static_cast<time_t>(-1)) {
syscall(__NR_exit_group, static_cast<intptr_t>(kExpectedExitCode));
}
}
bool IsSingleThreaded(int proc_fd) {
if (proc_fd < 0) {
// Cannot determine whether program is single-threaded. Hope for
// the best...
return true;
}
struct stat sb;
int task = -1;
if ((task = openat(proc_fd, "self/task", O_RDONLY | O_DIRECTORY)) < 0 ||
fstat(task, &sb) != 0 || sb.st_nlink != 3 || HANDLE_EINTR(close(task))) {
if (task >= 0) {
if (HANDLE_EINTR(close(task))) {
}
}
return false;
}
return true;
}
bool IsDenied(const ErrorCode& code) {
return (code.err() & SECCOMP_RET_ACTION) == SECCOMP_RET_TRAP ||
(code.err() >= (SECCOMP_RET_ERRNO + ErrorCode::ERR_MIN_ERRNO) &&
code.err() <= (SECCOMP_RET_ERRNO + ErrorCode::ERR_MAX_ERRNO));
}
// Function that can be passed as a callback function to CodeGen::Traverse().
// Checks whether the "insn" returns an UnsafeTrap() ErrorCode. If so, it
// sets the "bool" variable pointed to by "aux".
void CheckForUnsafeErrorCodes(Instruction* insn, void* aux) {
bool* is_unsafe = static_cast<bool*>(aux);
if (!*is_unsafe) {
if (BPF_CLASS(insn->code) == BPF_RET && insn->k > SECCOMP_RET_TRAP &&
insn->k - SECCOMP_RET_TRAP <= SECCOMP_RET_DATA) {
const ErrorCode& err =
Trap::ErrorCodeFromTrapId(insn->k & SECCOMP_RET_DATA);
if (err.error_type() != ErrorCode::ET_INVALID && !err.safe()) {
*is_unsafe = true;
}
}
}
}
// A Trap() handler that returns an "errno" value. The value is encoded
// in the "aux" parameter.
intptr_t ReturnErrno(const struct arch_seccomp_data&, void* aux) {
// TrapFnc functions report error by following the native kernel convention
// of returning an exit code in the range of -1..-4096. They do not try to
// set errno themselves. The glibc wrapper that triggered the SIGSYS will
// ultimately do so for us.
int err = reinterpret_cast<intptr_t>(aux) & SECCOMP_RET_DATA;
return -err;
}
// Function that can be passed as a callback function to CodeGen::Traverse().
// Checks whether the "insn" returns an errno value from a BPF filter. If so,
// it rewrites the instruction to instead call a Trap() handler that does
// the same thing. "aux" is ignored.
void RedirectToUserspace(Instruction* insn, void* aux) {
// When inside an UnsafeTrap() callback, we want to allow all system calls.
// This means, we must conditionally disable the sandbox -- and that's not
// something that kernel-side BPF filters can do, as they cannot inspect
// any state other than the syscall arguments.
// But if we redirect all error handlers to user-space, then we can easily
// make this decision.
// The performance penalty for this extra round-trip to user-space is not
// actually that bad, as we only ever pay it for denied system calls; and a
// typical program has very few of these.
Sandbox* sandbox = static_cast<Sandbox*>(aux);
if (BPF_CLASS(insn->code) == BPF_RET &&
(insn->k & SECCOMP_RET_ACTION) == SECCOMP_RET_ERRNO) {
insn->k = sandbox->Trap(ReturnErrno,
reinterpret_cast<void*>(insn->k & SECCOMP_RET_DATA)).err();
}
}
// This wraps an existing policy and changes its behavior to match the changes
// made by RedirectToUserspace(). This is part of the framework that allows BPF
// evaluation in userland.
// TODO(markus): document the code inside better.
class RedirectToUserSpacePolicyWrapper : public SandboxBpfPolicy {
public:
explicit RedirectToUserSpacePolicyWrapper(
const SandboxBpfPolicy* wrapped_policy)
: wrapped_policy_(wrapped_policy) {
DCHECK(wrapped_policy_);
}
virtual ErrorCode EvaluateSyscall(Sandbox* sandbox_compiler,
int system_call_number) const OVERRIDE {
ErrorCode err =
wrapped_policy_->EvaluateSyscall(sandbox_compiler, system_call_number);
if ((err.err() & SECCOMP_RET_ACTION) == SECCOMP_RET_ERRNO) {
return sandbox_compiler->Trap(
ReturnErrno, reinterpret_cast<void*>(err.err() & SECCOMP_RET_DATA));
}
return err;
}
private:
const SandboxBpfPolicy* wrapped_policy_;
DISALLOW_COPY_AND_ASSIGN(RedirectToUserSpacePolicyWrapper);
};
intptr_t BpfFailure(const struct arch_seccomp_data&, void* aux) {
SANDBOX_DIE(static_cast<char*>(aux));
}
// This class allows compatibility with the old, deprecated SetSandboxPolicy.
class CompatibilityPolicy : public SandboxBpfPolicy {
public:
CompatibilityPolicy(Sandbox::EvaluateSyscall syscall_evaluator, void* aux)
: syscall_evaluator_(syscall_evaluator), aux_(aux) {
DCHECK(syscall_evaluator_);
}
virtual ErrorCode EvaluateSyscall(Sandbox* sandbox_compiler,
int system_call_number) const OVERRIDE {
return syscall_evaluator_(sandbox_compiler, system_call_number, aux_);
}
private:
Sandbox::EvaluateSyscall syscall_evaluator_;
void* aux_;
DISALLOW_COPY_AND_ASSIGN(CompatibilityPolicy);
};
} // namespace
Sandbox::Sandbox()
: quiet_(false),
proc_fd_(-1),
conds_(new Conds),
sandbox_has_started_(false) {}
Sandbox::~Sandbox() {
// It is generally unsafe to call any memory allocator operations or to even
// call arbitrary destructors after having installed a new policy. We just
// have no way to tell whether this policy would allow the system calls that
// the constructors can trigger.
// So, we normally destroy all of our complex state prior to starting the
// sandbox. But this won't happen, if the Sandbox object was created and
// never actually used to set up a sandbox. So, just in case, we are
// destroying any remaining state.
// The "if ()" statements are technically superfluous. But let's be explicit
// that we really don't want to run any code, when we already destroyed
// objects before setting up the sandbox.
if (conds_) {
delete conds_;
}
}
bool Sandbox::IsValidSyscallNumber(int sysnum) {
return SyscallIterator::IsValid(sysnum);
}
bool Sandbox::RunFunctionInPolicy(void (*code_in_sandbox)(),
Sandbox::EvaluateSyscall syscall_evaluator,
void* aux) {
// Block all signals before forking a child process. This prevents an
// attacker from manipulating our test by sending us an unexpected signal.
sigset_t old_mask, new_mask;
if (sigfillset(&new_mask) || sigprocmask(SIG_BLOCK, &new_mask, &old_mask)) {
SANDBOX_DIE("sigprocmask() failed");
}
int fds[2];
if (pipe2(fds, O_NONBLOCK | O_CLOEXEC)) {
SANDBOX_DIE("pipe() failed");
}
if (fds[0] <= 2 || fds[1] <= 2) {
SANDBOX_DIE("Process started without standard file descriptors");
}
pid_t pid = fork();
if (pid < 0) {
// Die if we cannot fork(). We would probably fail a little later
// anyway, as the machine is likely very close to running out of
// memory.
// But what we don't want to do is return "false", as a crafty
// attacker might cause fork() to fail at will and could trick us
// into running without a sandbox.
sigprocmask(SIG_SETMASK, &old_mask, NULL); // OK, if it fails
SANDBOX_DIE("fork() failed unexpectedly");
}
// In the child process
if (!pid) {
// Test a very simple sandbox policy to verify that we can
// successfully turn on sandboxing.
Die::EnableSimpleExit();
errno = 0;
if (HANDLE_EINTR(close(fds[0]))) {
// This call to close() has been failing in strange ways. See
// crbug.com/152530. So we only fail in debug mode now.
#if !defined(NDEBUG)
WriteFailedStderrSetupMessage(fds[1]);
SANDBOX_DIE(NULL);
#endif
}
if (HANDLE_EINTR(dup2(fds[1], 2)) != 2) {
// Stderr could very well be a file descriptor to .xsession-errors, or
// another file, which could be backed by a file system that could cause
// dup2 to fail while trying to close stderr. It's important that we do
// not fail on trying to close stderr.
// If dup2 fails here, we will continue normally, this means that our
// parent won't cause a fatal failure if something writes to stderr in
// this child.
#if !defined(NDEBUG)
// In DEBUG builds, we still want to get a report.
WriteFailedStderrSetupMessage(fds[1]);
SANDBOX_DIE(NULL);
#endif
}
if (HANDLE_EINTR(close(fds[1]))) {
// This call to close() has been failing in strange ways. See
// crbug.com/152530. So we only fail in debug mode now.
#if !defined(NDEBUG)
WriteFailedStderrSetupMessage(fds[1]);
SANDBOX_DIE(NULL);
#endif
}
SetSandboxPolicyDeprecated(syscall_evaluator, aux);
StartSandbox();
// Run our code in the sandbox.
code_in_sandbox();
// code_in_sandbox() is not supposed to return here.
SANDBOX_DIE(NULL);
}
// In the parent process.
if (HANDLE_EINTR(close(fds[1]))) {
SANDBOX_DIE("close() failed");
}
if (sigprocmask(SIG_SETMASK, &old_mask, NULL)) {
SANDBOX_DIE("sigprocmask() failed");
}
int status;
if (HANDLE_EINTR(waitpid(pid, &status, 0)) != pid) {
SANDBOX_DIE("waitpid() failed unexpectedly");
}
bool rc = WIFEXITED(status) && WEXITSTATUS(status) == kExpectedExitCode;
// If we fail to support sandboxing, there might be an additional
// error message. If so, this was an entirely unexpected and fatal
// failure. We should report the failure and somebody must fix
// things. This is probably a security-critical bug in the sandboxing
// code.
if (!rc) {
char buf[4096];
ssize_t len = HANDLE_EINTR(read(fds[0], buf, sizeof(buf) - 1));
if (len > 0) {
while (len > 1 && buf[len - 1] == '\n') {
--len;
}
buf[len] = '\000';
SANDBOX_DIE(buf);
}
}
if (HANDLE_EINTR(close(fds[0]))) {
SANDBOX_DIE("close() failed");
}
return rc;
}
bool Sandbox::KernelSupportSeccompBPF() {
return RunFunctionInPolicy(ProbeProcess, ProbeEvaluator, 0) &&
RunFunctionInPolicy(TryVsyscallProcess, AllowAllEvaluator, 0);
}
Sandbox::SandboxStatus Sandbox::SupportsSeccompSandbox(int proc_fd) {
// It the sandbox is currently active, we clearly must have support for
// sandboxing.
if (status_ == STATUS_ENABLED) {
return status_;
}
// Even if the sandbox was previously available, something might have
// changed in our run-time environment. Check one more time.
if (status_ == STATUS_AVAILABLE) {
if (!IsSingleThreaded(proc_fd)) {
status_ = STATUS_UNAVAILABLE;
}
return status_;
}
if (status_ == STATUS_UNAVAILABLE && IsSingleThreaded(proc_fd)) {
// All state transitions resulting in STATUS_UNAVAILABLE are immediately
// preceded by STATUS_AVAILABLE. Furthermore, these transitions all
// happen, if and only if they are triggered by the process being multi-
// threaded.
// In other words, if a single-threaded process is currently in the
// STATUS_UNAVAILABLE state, it is safe to assume that sandboxing is
// actually available.
status_ = STATUS_AVAILABLE;
return status_;
}
// If we have not previously checked for availability of the sandbox or if
// we otherwise don't believe to have a good cached value, we have to
// perform a thorough check now.
if (status_ == STATUS_UNKNOWN) {
// We create our own private copy of a "Sandbox" object. This ensures that
// the object does not have any policies configured, that might interfere
// with the tests done by "KernelSupportSeccompBPF()".
Sandbox sandbox;
// By setting "quiet_ = true" we suppress messages for expected and benign
// failures (e.g. if the current kernel lacks support for BPF filters).
sandbox.quiet_ = true;
sandbox.set_proc_fd(proc_fd);
status_ = sandbox.KernelSupportSeccompBPF() ? STATUS_AVAILABLE
: STATUS_UNSUPPORTED;
// As we are performing our tests from a child process, the run-time
// environment that is visible to the sandbox is always guaranteed to be
// single-threaded. Let's check here whether the caller is single-
// threaded. Otherwise, we mark the sandbox as temporarily unavailable.
if (status_ == STATUS_AVAILABLE && !IsSingleThreaded(proc_fd)) {
status_ = STATUS_UNAVAILABLE;
}
}
return status_;
}
void Sandbox::set_proc_fd(int proc_fd) { proc_fd_ = proc_fd; }
void Sandbox::StartSandbox() {
if (status_ == STATUS_UNSUPPORTED || status_ == STATUS_UNAVAILABLE) {
SANDBOX_DIE(
"Trying to start sandbox, even though it is known to be "
"unavailable");
} else if (sandbox_has_started_ || !conds_) {
SANDBOX_DIE(
"Cannot repeatedly start sandbox. Create a separate Sandbox "
"object instead.");
}
if (proc_fd_ < 0) {
proc_fd_ = open("/proc", O_RDONLY | O_DIRECTORY);
}
if (proc_fd_ < 0) {
// For now, continue in degraded mode, if we can't access /proc.
// In the future, we might want to tighten this requirement.
}
if (!IsSingleThreaded(proc_fd_)) {
SANDBOX_DIE("Cannot start sandbox, if process is already multi-threaded");
}
// We no longer need access to any files in /proc. We want to do this
// before installing the filters, just in case that our policy denies
// close().
if (proc_fd_ >= 0) {
if (HANDLE_EINTR(close(proc_fd_))) {
SANDBOX_DIE("Failed to close file descriptor for /proc");
}
proc_fd_ = -1;
}
// Install the filters.
InstallFilter();
// We are now inside the sandbox.
status_ = STATUS_ENABLED;
}
void Sandbox::PolicySanityChecks(SandboxBpfPolicy* policy) {
for (SyscallIterator iter(true); !iter.Done();) {
uint32_t sysnum = iter.Next();
if (!IsDenied(policy->EvaluateSyscall(this, sysnum))) {
SANDBOX_DIE(
"Policies should deny system calls that are outside the "
"expected range (typically MIN_SYSCALL..MAX_SYSCALL)");
}
}
return;
}
// Deprecated API, supported with a wrapper to the new API.
void Sandbox::SetSandboxPolicyDeprecated(EvaluateSyscall syscall_evaluator,
void* aux) {
if (sandbox_has_started_ || !conds_) {
SANDBOX_DIE("Cannot change policy after sandbox has started");
}
SetSandboxPolicy(new CompatibilityPolicy(syscall_evaluator, aux));
}
// Don't take a scoped_ptr here, polymorphism make their use awkward.
void Sandbox::SetSandboxPolicy(SandboxBpfPolicy* policy) {
DCHECK(!policy_);
if (sandbox_has_started_ || !conds_) {
SANDBOX_DIE("Cannot change policy after sandbox has started");
}
PolicySanityChecks(policy);
policy_.reset(policy);
}
void Sandbox::InstallFilter() {
// We want to be very careful in not imposing any requirements on the
// policies that are set with SetSandboxPolicy(). This means, as soon as
// the sandbox is active, we shouldn't be relying on libraries that could
// be making system calls. This, for example, means we should avoid
// using the heap and we should avoid using STL functions.
// Temporarily copy the contents of the "program" vector into a
// stack-allocated array; and then explicitly destroy that object.
// This makes sure we don't ex- or implicitly call new/delete after we
// installed the BPF filter program in the kernel. Depending on the
// system memory allocator that is in effect, these operators can result
// in system calls to things like munmap() or brk().
Program* program = AssembleFilter(false /* force_verification */);
struct sock_filter bpf[program->size()];
const struct sock_fprog prog = {static_cast<unsigned short>(program->size()),
bpf};
memcpy(bpf, &(*program)[0], sizeof(bpf));
delete program;
// Make an attempt to release memory that is no longer needed here, rather
// than in the destructor. Try to avoid as much as possible to presume of
// what will be possible to do in the new (sandboxed) execution environment.
delete conds_;
conds_ = NULL;
policy_.reset();
// Install BPF filter program
if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) {
SANDBOX_DIE(quiet_ ? NULL : "Kernel refuses to enable no-new-privs");
} else {
if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog)) {
SANDBOX_DIE(quiet_ ? NULL : "Kernel refuses to turn on BPF filters");
}
}
sandbox_has_started_ = true;
return;
}
Sandbox::Program* Sandbox::AssembleFilter(bool force_verification) {
#if !defined(NDEBUG)
force_verification = true;
#endif
// Verify that the user pushed a policy.
DCHECK(policy_);
// Assemble the BPF filter program.
CodeGen* gen = new CodeGen();
if (!gen) {
SANDBOX_DIE("Out of memory");
}
// If the architecture doesn't match SECCOMP_ARCH, disallow the
// system call.
Instruction* tail;
Instruction* head = gen->MakeInstruction(
BPF_LD + BPF_W + BPF_ABS,
SECCOMP_ARCH_IDX,
tail = gen->MakeInstruction(
BPF_JMP + BPF_JEQ + BPF_K,
SECCOMP_ARCH,
NULL,
gen->MakeInstruction(
BPF_RET + BPF_K,
Kill("Invalid audit architecture in BPF filter"))));
bool has_unsafe_traps = false;
{
// Evaluate all possible system calls and group their ErrorCodes into
// ranges of identical codes.
Ranges ranges;
FindRanges(&ranges);
// Compile the system call ranges to an optimized BPF jumptable
Instruction* jumptable =
AssembleJumpTable(gen, ranges.begin(), ranges.end());
// If there is at least one UnsafeTrap() in our program, the entire sandbox
// is unsafe. We need to modify the program so that all non-
// SECCOMP_RET_ALLOW ErrorCodes are handled in user-space. This will then
// allow us to temporarily disable sandboxing rules inside of callbacks to
// UnsafeTrap().
gen->Traverse(jumptable, CheckForUnsafeErrorCodes, &has_unsafe_traps);
// Grab the system call number, so that we can implement jump tables.
Instruction* load_nr =
gen->MakeInstruction(BPF_LD + BPF_W + BPF_ABS, SECCOMP_NR_IDX);
// If our BPF program has unsafe jumps, enable support for them. This
// test happens very early in the BPF filter program. Even before we
// consider looking at system call numbers.
// As support for unsafe jumps essentially defeats all the security
// measures that the sandbox provides, we print a big warning message --
// and of course, we make sure to only ever enable this feature if it
// is actually requested by the sandbox policy.
if (has_unsafe_traps) {
if (SandboxSyscall(-1) == -1 && errno == ENOSYS) {
SANDBOX_DIE(
"Support for UnsafeTrap() has not yet been ported to this "
"architecture");
}
if (!policy_->EvaluateSyscall(this, __NR_rt_sigprocmask)
.Equals(ErrorCode(ErrorCode::ERR_ALLOWED)) ||
!policy_->EvaluateSyscall(this, __NR_rt_sigreturn)
.Equals(ErrorCode(ErrorCode::ERR_ALLOWED))
#if defined(__NR_sigprocmask)
||
!policy_->EvaluateSyscall(this, __NR_sigprocmask)
.Equals(ErrorCode(ErrorCode::ERR_ALLOWED))
#endif
#if defined(__NR_sigreturn)
||
!policy_->EvaluateSyscall(this, __NR_sigreturn)
.Equals(ErrorCode(ErrorCode::ERR_ALLOWED))
#endif
) {
SANDBOX_DIE(
"Invalid seccomp policy; if using UnsafeTrap(), you must "
"unconditionally allow sigreturn() and sigprocmask()");
}
if (!Trap::EnableUnsafeTrapsInSigSysHandler()) {
// We should never be able to get here, as UnsafeTrap() should never
// actually return a valid ErrorCode object unless the user set the
// CHROME_SANDBOX_DEBUGGING environment variable; and therefore,
// "has_unsafe_traps" would always be false. But better double-check
// than enabling dangerous code.
SANDBOX_DIE("We'd rather die than enable unsafe traps");
}
gen->Traverse(jumptable, RedirectToUserspace, this);
// Allow system calls, if they originate from our magic return address
// (which we can query by calling SandboxSyscall(-1)).
uintptr_t syscall_entry_point =
static_cast<uintptr_t>(SandboxSyscall(-1));
uint32_t low = static_cast<uint32_t>(syscall_entry_point);
#if __SIZEOF_POINTER__ > 4
uint32_t hi = static_cast<uint32_t>(syscall_entry_point >> 32);
#endif
// BPF cannot do native 64bit comparisons. On 64bit architectures, we
// have to compare both 32bit halves of the instruction pointer. If they
// match what we expect, we return ERR_ALLOWED. If either or both don't
// match, we continue evalutating the rest of the sandbox policy.
Instruction* escape_hatch = gen->MakeInstruction(
BPF_LD + BPF_W + BPF_ABS,
SECCOMP_IP_LSB_IDX,
gen->MakeInstruction(
BPF_JMP + BPF_JEQ + BPF_K,
low,
#if __SIZEOF_POINTER__ > 4
gen->MakeInstruction(
BPF_LD + BPF_W + BPF_ABS,
SECCOMP_IP_MSB_IDX,
gen->MakeInstruction(
BPF_JMP + BPF_JEQ + BPF_K,
hi,
#endif
gen->MakeInstruction(BPF_RET + BPF_K,
ErrorCode(ErrorCode::ERR_ALLOWED)),
#if __SIZEOF_POINTER__ > 4
load_nr)),
#endif
load_nr));
gen->JoinInstructions(tail, escape_hatch);
} else {
gen->JoinInstructions(tail, load_nr);
}
tail = load_nr;
// On Intel architectures, verify that system call numbers are in the
// expected number range. The older i386 and x86-64 APIs clear bit 30
// on all system calls. The newer x32 API always sets bit 30.
#if defined(__i386__) || defined(__x86_64__)
Instruction* invalidX32 = gen->MakeInstruction(
BPF_RET + BPF_K, Kill("Illegal mixing of system call ABIs").err_);
Instruction* checkX32 =
#if defined(__x86_64__) && defined(__ILP32__)
gen->MakeInstruction(
BPF_JMP + BPF_JSET + BPF_K, 0x40000000, 0, invalidX32);
#else
gen->MakeInstruction(
BPF_JMP + BPF_JSET + BPF_K, 0x40000000, invalidX32, 0);
#endif
gen->JoinInstructions(tail, checkX32);
tail = checkX32;
#endif
// Append jump table to our pre-amble
gen->JoinInstructions(tail, jumptable);
}
// Turn the DAG into a vector of instructions.
Program* program = new Program();
gen->Compile(head, program);
delete gen;
// Make sure compilation resulted in BPF program that executes
// correctly. Otherwise, there is an internal error in our BPF compiler.
// There is really nothing the caller can do until the bug is fixed.
if (force_verification) {
// Verification is expensive. We only perform this step, if we are
// compiled in debug mode, or if the caller explicitly requested
// verification.
VerifyProgram(*program, has_unsafe_traps);
}
return program;
}
void Sandbox::VerifyProgram(const Program& program, bool has_unsafe_traps) {
// If we previously rewrote the BPF program so that it calls user-space
// whenever we return an "errno" value from the filter, then we have to
// wrap our system call evaluator to perform the same operation. Otherwise,
// the verifier would also report a mismatch in return codes.
scoped_ptr<const RedirectToUserSpacePolicyWrapper> redirected_policy(
new RedirectToUserSpacePolicyWrapper(policy_.get()));
const char* err = NULL;
if (!Verifier::VerifyBPF(this,
program,
has_unsafe_traps ? *redirected_policy : *policy_,
&err)) {
CodeGen::PrintProgram(program);
SANDBOX_DIE(err);
}
}
void Sandbox::FindRanges(Ranges* ranges) {
// Please note that "struct seccomp_data" defines system calls as a signed
// int32_t, but BPF instructions always operate on unsigned quantities. We
// deal with this disparity by enumerating from MIN_SYSCALL to MAX_SYSCALL,
// and then verifying that the rest of the number range (both positive and
// negative) all return the same ErrorCode.
uint32_t old_sysnum = 0;
ErrorCode old_err = policy_->EvaluateSyscall(this, old_sysnum);
ErrorCode invalid_err = policy_->EvaluateSyscall(this, MIN_SYSCALL - 1);
for (SyscallIterator iter(false); !iter.Done();) {
uint32_t sysnum = iter.Next();
ErrorCode err = policy_->EvaluateSyscall(this, static_cast<int>(sysnum));
if (!iter.IsValid(sysnum) && !invalid_err.Equals(err)) {
// A proper sandbox policy should always treat system calls outside of
// the range MIN_SYSCALL..MAX_SYSCALL (i.e. anything that returns
// "false" for SyscallIterator::IsValid()) identically. Typically, all
// of these system calls would be denied with the same ErrorCode.
SANDBOX_DIE("Invalid seccomp policy");
}
if (!err.Equals(old_err) || iter.Done()) {
ranges->push_back(Range(old_sysnum, sysnum - 1, old_err));
old_sysnum = sysnum;
old_err = err;
}
}
}
Instruction* Sandbox::AssembleJumpTable(CodeGen* gen,
Ranges::const_iterator start,
Ranges::const_iterator stop) {
// We convert the list of system call ranges into jump table that performs
// a binary search over the ranges.
// As a sanity check, we need to have at least one distinct ranges for us
// to be able to build a jump table.
if (stop - start <= 0) {
SANDBOX_DIE("Invalid set of system call ranges");
} else if (stop - start == 1) {
// If we have narrowed things down to a single range object, we can
// return from the BPF filter program.
return RetExpression(gen, start->err);
}
// Pick the range object that is located at the mid point of our list.
// We compare our system call number against the lowest valid system call
// number in this range object. If our number is lower, it is outside of
// this range object. If it is greater or equal, it might be inside.
Ranges::const_iterator mid = start + (stop - start) / 2;
// Sub-divide the list of ranges and continue recursively.
Instruction* jf = AssembleJumpTable(gen, start, mid);
Instruction* jt = AssembleJumpTable(gen, mid, stop);
return gen->MakeInstruction(BPF_JMP + BPF_JGE + BPF_K, mid->from, jt, jf);
}
Instruction* Sandbox::RetExpression(CodeGen* gen, const ErrorCode& err) {
if (err.error_type_ == ErrorCode::ET_COND) {
return CondExpression(gen, err);
} else {
return gen->MakeInstruction(BPF_RET + BPF_K, err);
}
}
Instruction* Sandbox::CondExpression(CodeGen* gen, const ErrorCode& cond) {
// We can only inspect the six system call arguments that are passed in
// CPU registers.
if (cond.argno_ < 0 || cond.argno_ >= 6) {
SANDBOX_DIE(
"Internal compiler error; invalid argument number "
"encountered");
}
// BPF programs operate on 32bit entities. Load both halfs of the 64bit
// system call argument and then generate suitable conditional statements.
Instruction* msb_head = gen->MakeInstruction(
BPF_LD + BPF_W + BPF_ABS, SECCOMP_ARG_MSB_IDX(cond.argno_));
Instruction* msb_tail = msb_head;
Instruction* lsb_head = gen->MakeInstruction(
BPF_LD + BPF_W + BPF_ABS, SECCOMP_ARG_LSB_IDX(cond.argno_));
Instruction* lsb_tail = lsb_head;
// Emit a suitable comparison statement.
switch (cond.op_) {
case ErrorCode::OP_EQUAL:
// Compare the least significant bits for equality
lsb_tail = gen->MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K,
static_cast<uint32_t>(cond.value_),
RetExpression(gen, *cond.passed_),
RetExpression(gen, *cond.failed_));
gen->JoinInstructions(lsb_head, lsb_tail);
// If we are looking at a 64bit argument, we need to also compare the
// most significant bits.
if (cond.width_ == ErrorCode::TP_64BIT) {
msb_tail =
gen->MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K,
static_cast<uint32_t>(cond.value_ >> 32),
lsb_head,
RetExpression(gen, *cond.failed_));
gen->JoinInstructions(msb_head, msb_tail);
}
break;
case ErrorCode::OP_HAS_ALL_BITS:
// Check the bits in the LSB half of the system call argument. Our
// OP_HAS_ALL_BITS operator passes, iff all of the bits are set. This is
// different from the kernel's BPF_JSET operation which passes, if any of
// the bits are set.
// Of course, if there is only a single set bit (or none at all), then
// things get easier.
{
uint32_t lsb_bits = static_cast<uint32_t>(cond.value_);
int lsb_bit_count = popcount(lsb_bits);
if (lsb_bit_count == 0) {
// No bits are set in the LSB half. The test will always pass.
lsb_head = RetExpression(gen, *cond.passed_);
lsb_tail = NULL;
} else if (lsb_bit_count == 1) {
// Exactly one bit is set in the LSB half. We can use the BPF_JSET
// operator.
lsb_tail = gen->MakeInstruction(BPF_JMP + BPF_JSET + BPF_K,
lsb_bits,
RetExpression(gen, *cond.passed_),
RetExpression(gen, *cond.failed_));
gen->JoinInstructions(lsb_head, lsb_tail);
} else {
// More than one bit is set in the LSB half. We need to combine
// BPF_AND and BPF_JEQ to test whether all of these bits are in fact
// set in the system call argument.
gen->JoinInstructions(
lsb_head,
gen->MakeInstruction(BPF_ALU + BPF_AND + BPF_K,
lsb_bits,
lsb_tail = gen->MakeInstruction(
BPF_JMP + BPF_JEQ + BPF_K,
lsb_bits,
RetExpression(gen, *cond.passed_),
RetExpression(gen, *cond.failed_))));
}
}
// If we are looking at a 64bit argument, we need to also check the bits
// in the MSB half of the system call argument.
if (cond.width_ == ErrorCode::TP_64BIT) {
uint32_t msb_bits = static_cast<uint32_t>(cond.value_ >> 32);
int msb_bit_count = popcount(msb_bits);
if (msb_bit_count == 0) {
// No bits are set in the MSB half. The test will always pass.
msb_head = lsb_head;
} else if (msb_bit_count == 1) {
// Exactly one bit is set in the MSB half. We can use the BPF_JSET
// operator.
msb_tail = gen->MakeInstruction(BPF_JMP + BPF_JSET + BPF_K,
msb_bits,
lsb_head,
RetExpression(gen, *cond.failed_));
gen->JoinInstructions(msb_head, msb_tail);
} else {
// More than one bit is set in the MSB half. We need to combine
// BPF_AND and BPF_JEQ to test whether all of these bits are in fact
// set in the system call argument.
gen->JoinInstructions(
msb_head,
gen->MakeInstruction(
BPF_ALU + BPF_AND + BPF_K,
msb_bits,
gen->MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K,
msb_bits,
lsb_head,
RetExpression(gen, *cond.failed_))));
}
}
break;
case ErrorCode::OP_HAS_ANY_BITS:
// Check the bits in the LSB half of the system call argument. Our
// OP_HAS_ANY_BITS operator passes, iff any of the bits are set. This maps
// nicely to the kernel's BPF_JSET operation.
{
uint32_t lsb_bits = static_cast<uint32_t>(cond.value_);
if (!lsb_bits) {
// No bits are set in the LSB half. The test will always fail.
lsb_head = RetExpression(gen, *cond.failed_);
lsb_tail = NULL;
} else {
lsb_tail = gen->MakeInstruction(BPF_JMP + BPF_JSET + BPF_K,
lsb_bits,
RetExpression(gen, *cond.passed_),
RetExpression(gen, *cond.failed_));
gen->JoinInstructions(lsb_head, lsb_tail);
}
}
// If we are looking at a 64bit argument, we need to also check the bits
// in the MSB half of the system call argument.
if (cond.width_ == ErrorCode::TP_64BIT) {
uint32_t msb_bits = static_cast<uint32_t>(cond.value_ >> 32);
if (!msb_bits) {
// No bits are set in the MSB half. The test will always fail.
msb_head = lsb_head;
} else {
msb_tail = gen->MakeInstruction(BPF_JMP + BPF_JSET + BPF_K,
msb_bits,
RetExpression(gen, *cond.passed_),
lsb_head);
gen->JoinInstructions(msb_head, msb_tail);
}
}
break;
default:
// TODO(markus): Need to add support for OP_GREATER
SANDBOX_DIE("Not implemented");
break;
}
// Ensure that we never pass a 64bit value, when we only expect a 32bit
// value. This is somewhat complicated by the fact that on 64bit systems,
// callers could legitimately pass in a non-zero value in the MSB, iff the
// LSB has been sign-extended into the MSB.
if (cond.width_ == ErrorCode::TP_32BIT) {
if (cond.value_ >> 32) {
SANDBOX_DIE(
"Invalid comparison of a 32bit system call argument "
"against a 64bit constant; this test is always false.");
}
Instruction* invalid_64bit = RetExpression(gen, Unexpected64bitArgument());
#if __SIZEOF_POINTER__ > 4
invalid_64bit = gen->MakeInstruction(
BPF_JMP + BPF_JEQ + BPF_K,
0xFFFFFFFF,
gen->MakeInstruction(BPF_LD + BPF_W + BPF_ABS,
SECCOMP_ARG_LSB_IDX(cond.argno_),
gen->MakeInstruction(BPF_JMP + BPF_JGE + BPF_K,
0x80000000,
lsb_head,
invalid_64bit)),
invalid_64bit);
#endif
gen->JoinInstructions(
msb_tail,
gen->MakeInstruction(
BPF_JMP + BPF_JEQ + BPF_K, 0, lsb_head, invalid_64bit));
}
return msb_head;
}
ErrorCode Sandbox::Unexpected64bitArgument() {
return Kill("Unexpected 64bit argument detected");
}
ErrorCode Sandbox::Trap(Trap::TrapFnc fnc, const void* aux) {
return Trap::MakeTrap(fnc, aux, true /* Safe Trap */);
}
ErrorCode Sandbox::UnsafeTrap(Trap::TrapFnc fnc, const void* aux) {
return Trap::MakeTrap(fnc, aux, false /* Unsafe Trap */);
}
intptr_t Sandbox::ForwardSyscall(const struct arch_seccomp_data& args) {
return SandboxSyscall(args.nr,
static_cast<intptr_t>(args.args[0]),
static_cast<intptr_t>(args.args[1]),
static_cast<intptr_t>(args.args[2]),
static_cast<intptr_t>(args.args[3]),
static_cast<intptr_t>(args.args[4]),
static_cast<intptr_t>(args.args[5]));
}
ErrorCode Sandbox::Cond(int argno,
ErrorCode::ArgType width,
ErrorCode::Operation op,
uint64_t value,
const ErrorCode& passed,
const ErrorCode& failed) {
return ErrorCode(argno,
width,
op,
value,
&*conds_->insert(passed).first,
&*conds_->insert(failed).first);
}
ErrorCode Sandbox::Kill(const char* msg) {
return Trap(BpfFailure, const_cast<char*>(msg));
}
Sandbox::SandboxStatus Sandbox::status_ = STATUS_UNKNOWN;
} // namespace playground2
|