summaryrefslogtreecommitdiffstats
path: root/sandbox/linux/seccomp/library.cc
blob: e882ba4f8f28bcf036c6d06766db2636e23494ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#define XOPEN_SOURCE 500
#include <algorithm>
#include <elf.h>
#include <errno.h>
#include <errno.h>
#include <fcntl.h>
#include <iostream>
#include <linux/unistd.h>
#include <set>
#include <signal.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ptrace.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <sys/types.h>

#include "allocator.h"
#include "debug.h"
#include "library.h"
#include "sandbox_impl.h"
#include "syscall.h"
#include "syscall_table.h"
#include "x86_decode.h"

#if defined(__x86_64__)
typedef Elf64_Phdr    Elf_Phdr;
typedef Elf64_Rela    Elf_Rel;

typedef Elf64_Half    Elf_Half;
typedef Elf64_Word    Elf_Word;
typedef Elf64_Sword   Elf_Sword;
typedef Elf64_Xword   Elf_Xword;
typedef Elf64_Sxword  Elf_Sxword;
typedef Elf64_Off     Elf_Off;
typedef Elf64_Section Elf_Section;
typedef Elf64_Versym  Elf_Versym;

#define ELF_ST_BIND   ELF64_ST_BIND
#define ELF_ST_TYPE   ELF64_ST_TYPE
#define ELF_ST_INFO   ELF64_ST_INFO
#define ELF_R_SYM     ELF64_R_SYM
#define ELF_R_TYPE    ELF64_R_TYPE
#define ELF_R_INFO    ELF64_R_INFO

#define ELF_REL_PLT   ".rela.plt"
#define ELF_JUMP_SLOT R_X86_64_JUMP_SLOT
#elif defined(__i386__)
typedef Elf32_Phdr    Elf_Phdr;
typedef Elf32_Rel     Elf_Rel;

typedef Elf32_Half    Elf_Half;
typedef Elf32_Word    Elf_Word;
typedef Elf32_Sword   Elf_Sword;
typedef Elf32_Xword   Elf_Xword;
typedef Elf32_Sxword  Elf_Sxword;
typedef Elf32_Off     Elf_Off;
typedef Elf32_Section Elf_Section;
typedef Elf32_Versym  Elf_Versym;

#define ELF_ST_BIND   ELF32_ST_BIND
#define ELF_ST_TYPE   ELF32_ST_TYPE
#define ELF_ST_INFO   ELF32_ST_INFO
#define ELF_R_SYM     ELF32_R_SYM
#define ELF_R_TYPE    ELF32_R_TYPE
#define ELF_R_INFO    ELF32_R_INFO

#define ELF_REL_PLT   ".rel.plt"
#define ELF_JUMP_SLOT R_386_JMP_SLOT
#else
#error Unsupported target platform
#endif

namespace playground {

char* Library::__kernel_vsyscall;
char* Library::__kernel_sigreturn;
char* Library::__kernel_rt_sigreturn;

Library::~Library() {
  if (image_size_) {
    // We no longer need access to a full mapping of the underlying library
    // file. Move the temporarily extended mapping back to where we originally
    // found. Make sure to preserve any changes that we might have made since.
    Sandbox::SysCalls sys;
    sys.mprotect(image_, 4096, PROT_READ | PROT_WRITE | PROT_EXEC);
    if (memcmp(image_, memory_ranges_.rbegin()->second.start, 4096)) {
      // Only copy data, if we made any changes in this data. Otherwise there
      // is no need to create another modified COW mapping.
      memcpy(image_, memory_ranges_.rbegin()->second.start, 4096);
    }
    sys.mprotect(image_, 4096, PROT_READ | PROT_EXEC);
    sys.mremap(image_, image_size_, 4096, MREMAP_MAYMOVE | MREMAP_FIXED,
               memory_ranges_.rbegin()->second.start);
  }
}

char* Library::getBytes(char* dst, const char* src, ssize_t len) {
  // Some kernels don't allow accessing the VDSO from write()
  if (isVDSO_ &&
      src >= memory_ranges_.begin()->second.start &&
      src <= memory_ranges_.begin()->second.stop) {
    ssize_t max =
      reinterpret_cast<char *>(memory_ranges_.begin()->second.stop) - src;
    if (len > max) {
      len = max;
    }
    memcpy(dst, src, len);
    return dst;
  }

  // Read up to "len" bytes from "src" and copy them to "dst". Short
  // copies are possible, if we are at the end of a mapping. Returns
  // NULL, if the operation failed completely.
  static int helper_socket[2];
  Sandbox::SysCalls sys;
  if (!helper_socket[0] && !helper_socket[1]) {
    // Copy data through a socketpair, as this allows us to access it
    // without incurring a segmentation fault.
    sys.socketpair(AF_UNIX, SOCK_STREAM, 0, helper_socket);
  }
  char* ptr = dst;
  int   inc = 4096;
  while (len > 0) {
    ssize_t l = inc == 1 ? inc : 4096 - (reinterpret_cast<long>(src) & 0xFFF);
    if (l > len) {
      l = len;
    }
    l = NOINTR_SYS(sys.write(helper_socket[0], src, l));
    if (l == -1) {
      if (sys.my_errno == EFAULT) {
        if (inc == 1) {
          if (ptr == dst) {
            return NULL;
          }
          break;
        }
        inc = 1;
        continue;
      } else {
        return NULL;
      }
    }
    l = sys.read(helper_socket[1], ptr, l);
    if (l <= 0) {
      return NULL;
    }
    ptr += l;
    src += l;
    len -= l;
  }
  return dst;
}

char *Library::get(Elf_Addr offset, char *buf, size_t len) {
  if (!valid_) {
    memset(buf, 0, len);
    return NULL;
  }
  RangeMap::const_iterator iter = memory_ranges_.lower_bound(offset);
  if (iter == memory_ranges_.end()) {
    memset(buf, 0, len);
    return NULL;
  }
  offset -= iter->first;
  long size = reinterpret_cast<char *>(iter->second.stop) -
              reinterpret_cast<char *>(iter->second.start);
  if (offset > size - len) {
    memset(buf, 0, len);
    return NULL;
  }
  char *src = reinterpret_cast<char *>(iter->second.start) + offset;
  memset(buf, 0, len);
  if (!getBytes(buf, src, len)) {
    return NULL;
  }
  return buf;
}

Library::string Library::get(Elf_Addr offset) {
  if (!valid_) {
    return "";
  }
  RangeMap::const_iterator iter = memory_ranges_.lower_bound(offset);
  if (iter == memory_ranges_.end()) {
    return "";
  }
  offset -= iter->first;
  const char *start = reinterpret_cast<char *>(iter->second.start) + offset;
  const char *stop  = reinterpret_cast<char *>(iter->second.stop) + offset;
  char buf[4096]    = { 0 };
  getBytes(buf, start, stop - start >= (int)sizeof(buf) ?
           sizeof(buf) - 1 : stop - start);
  start             = buf;
  stop              = buf;
  while (*stop) {
    ++stop;
  }
  string s = stop > start ? string(start, stop - start) : "";
  return s;
}

char *Library::getOriginal(Elf_Addr offset, char *buf, size_t len) {
  if (!valid_) {
    memset(buf, 0, len);
    return NULL;
  }
  Sandbox::SysCalls sys;
  if (!image_ && !isVDSO_ && !memory_ranges_.empty() &&
      memory_ranges_.rbegin()->first == 0) {
    // Extend the mapping of the very first page of the underlying library
    // file. This way, we can read the original file contents of the entire
    // library.
    // We have to be careful, because doing so temporarily removes the first
    // 4096 bytes of the library from memory. And we don't want to accidentally
    // unmap code that we are executing. So, only use functions that can be
    // inlined.
    void* start = memory_ranges_.rbegin()->second.start;
    image_size_ = memory_ranges_.begin()->first +
      (reinterpret_cast<char *>(memory_ranges_.begin()->second.stop) -
       reinterpret_cast<char *>(memory_ranges_.begin()->second.start));
    if (image_size_ < 8192) {
      // It is possible to create a library that is only a single page in
      // size. In that case, we have to make sure that we artificially map
      // one extra page past the end of it, as our code relies on mremap()
      // actually moving the mapping.
      image_size_ = 8192;
    }
    image_ = reinterpret_cast<char *>(sys.mremap(start, 4096, image_size_,
                                                 MREMAP_MAYMOVE));
    if (image_size_ == 8192 && image_ == start) {
      // We really mean it, when we say we want the memory to be moved.
      image_ = reinterpret_cast<char *>(sys.mremap(start, 4096, image_size_,
                                                   MREMAP_MAYMOVE));
      sys.munmap(reinterpret_cast<char *>(start) + 4096, 4096);
    }
    if (image_ == MAP_FAILED) {
      image_ = NULL;
    } else {
      sys.MMAP(start, 4096, PROT_READ | PROT_WRITE | PROT_EXEC,
               MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
      for (int i = 4096 / sizeof(long); --i;
           reinterpret_cast<long *>(start)[i] =
             reinterpret_cast<long *>(image_)[i]);
    }
  }

  if (image_) {
    if (offset + len > image_size_) {
      // It is quite likely that we initially did not map the entire file as
      // we did not know how large it is. So, if necessary, try to extend the
      // mapping.
      size_t new_size = (offset + len + 4095) & ~4095;
      char* tmp =
        reinterpret_cast<char *>(sys.mremap(image_, image_size_, new_size,
                                            MREMAP_MAYMOVE));
      if (tmp != MAP_FAILED) {
        image_      = tmp;
        image_size_ = new_size;
      }
    }
    if (buf && offset + len <= image_size_) {
      return reinterpret_cast<char *>(memcpy(buf, image_ + offset, len));
    }
    return NULL;
  }
  return buf ? get(offset, buf, len) : NULL;
}

Library::string Library::getOriginal(Elf_Addr offset) {
  if (!valid_) {
    return "";
  }
  // Make sure we actually have a mapping that we can access. If the string
  // is located at the end of the image, we might not yet have extended the
  // mapping sufficiently.
  if (!image_ || image_size_ <= offset) {
    getOriginal(offset, NULL, 1);
  }

  if (image_) {
    if (offset < image_size_) {
      char* start = image_ + offset;
      char* stop  = start;
      while (stop < image_ + image_size_ && *stop) {
        ++stop;
        if (stop >= image_ + image_size_) {
          getOriginal(stop - image_, NULL, 1);
        }
      }
      return string(start, stop - start);
    }
    return "";
  }
  return get(offset);
}

const Elf_Ehdr* Library::getEhdr() {
  if (!valid_) {
    return NULL;
  }
  return &ehdr_;
}

const Elf_Shdr* Library::getSection(const string& section) {
  if (!valid_) {
    return NULL;
  }
  SectionTable::const_iterator iter = section_table_.find(section);
  if (iter == section_table_.end()) {
    return NULL;
  }
  return &iter->second.second;
}

int Library::getSectionIndex(const string& section) {
  if (!valid_) {
    return -1;
  }
  SectionTable::const_iterator iter = section_table_.find(section);
  if (iter == section_table_.end()) {
    return -1;
  }
  return iter->second.first;
}

void Library::makeWritable(bool state) const {
  for (RangeMap::const_iterator iter = memory_ranges_.begin();
       iter != memory_ranges_.end(); ++iter) {
    const Range& range = iter->second;
    long length = reinterpret_cast<char *>(range.stop) -
                  reinterpret_cast<char *>(range.start);
    Sandbox::SysCalls sys;
    sys.mprotect(range.start, length,
                 range.prot | (state ? PROT_WRITE : 0));
  }
}

bool Library::isSafeInsn(unsigned short insn) {
  // Check if the instruction has no unexpected side-effects. If so, it can
  // be safely relocated from the function that we are patching into the
  // out-of-line scratch space that we are setting up. This is often necessary
  // to make room for the JMP into the scratch space.
  return ((insn & 0x7) < 0x6 && (insn & 0xF0) < 0x40
          /* ADD, OR, ADC, SBB, AND, SUB, XOR, CMP */) ||
         #if defined(__x86_64__)
         insn == 0x63 /* MOVSXD */ ||
         #endif
         (insn >= 0x80 && insn <= 0x8E /* ADD, OR, ADC,
         SBB, AND, SUB, XOR, CMP, TEST, XCHG, MOV, LEA */) ||
         (insn == 0x90) || /* NOP */
         (insn >= 0xA0 && insn <= 0xA9) /* MOV, TEST */ ||
         (insn >= 0xB0 && insn <= 0xBF /* MOV */) ||
         (insn >= 0xC0 && insn <= 0xC1) || /* Bit Shift */
         (insn >= 0xD0 && insn <= 0xD3) || /* Bit Shift */
         (insn >= 0xC6 && insn <= 0xC7 /* MOV */) ||
         (insn == 0xF7) /* TEST, NOT, NEG, MUL, IMUL, DIV, IDIV */;
}

char* Library::getScratchSpace(const Maps* maps, char* near, int needed,
                               char** extraSpace, int* extraLength) {
  if (needed > *extraLength ||
      labs(*extraSpace - reinterpret_cast<char *>(near)) > (1536 << 20)) {
    if (*extraSpace) {
      // Start a new scratch page and mark any previous page as write-protected
      Sandbox::SysCalls sys;
      sys.mprotect(*extraSpace, 4096, PROT_READ|PROT_EXEC);
    }
    // Our new scratch space is initially executable and writable.
    *extraLength = 4096;
    *extraSpace = maps->allocNearAddr(near, *extraLength,
                                      PROT_READ|PROT_WRITE|PROT_EXEC);
  }
  if (*extraSpace) {
    *extraLength -= needed;
    return *extraSpace + *extraLength;
  }
  Sandbox::die("Insufficient space to intercept system call");
}

void Library::patchSystemCallsInFunction(const Maps* maps, char *start,
                                         char *end, char** extraSpace,
                                         int* extraLength) {
  std::set<char *, std::less<char *>, SystemAllocator<char *> > branch_targets;
  for (char *ptr = start; ptr < end; ) {
    unsigned short insn = next_inst((const char **)&ptr, __WORDSIZE == 64);
    char *target;
    if ((insn >= 0x70 && insn <= 0x7F) /* Jcc */ || insn == 0xEB /* JMP */) {
      target = ptr + (reinterpret_cast<signed char *>(ptr))[-1];
    } else if (insn == 0xE8 /* CALL */ || insn == 0xE9 /* JMP */ ||
               (insn >= 0x0F80 && insn <= 0x0F8F) /* Jcc */) {
      target = ptr + (reinterpret_cast<int *>(ptr))[-1];
    } else {
      continue;
    }
    branch_targets.insert(target);
  }
  struct Code {
    char*          addr;
    int            len;
    unsigned short insn;
    bool           is_ip_relative;
  } code[5] = { { 0 } };
  int codeIdx = 0;
  char* ptr = start;
  while (ptr < end) {
    // Keep a ring-buffer of the last few instruction in order to find the
    // correct place to patch the code.
    char *mod_rm;
    code[codeIdx].addr = ptr;
    code[codeIdx].insn = next_inst((const char **)&ptr, __WORDSIZE == 64,
                                   0, 0, &mod_rm, 0, 0);
    code[codeIdx].len = ptr - code[codeIdx].addr;
    code[codeIdx].is_ip_relative =
      #if defined(__x86_64__)
        mod_rm && (*mod_rm & 0xC7) == 0x5;
      #else
        false;
      #endif

    // Whenever we find a system call, we patch it with a jump to out-of-line
    // code that redirects to our system call wrapper.
    bool is_syscall = true;
    #if defined(__x86_64__)
    bool is_indirect_call = false;
    if (code[codeIdx].insn == 0x0F05 /* SYSCALL */ ||
        // In addition, on x86-64, we need to redirect all CALLs between the
        // VDSO and the VSyscalls page. We want these to jump to our own
        // modified copy of the VSyscalls. As we know that the VSyscalls are
        // always more than 2GB away from the VDSO, the compiler has to
        // generate some form of indirect jumps. We can find all indirect
        // CALLs and redirect them to a separate scratch area, where we can
        // inspect the destination address. If it indeed points to the
        // VSyscall area, we then adjust the destination address accordingly.
        (is_indirect_call =
         (isVDSO_ && vsys_offset_ && code[codeIdx].insn == 0xFF &&
          !code[codeIdx].is_ip_relative &&
          mod_rm && (*mod_rm & 0x38) == 0x10 /* CALL (indirect) */))) {
      is_syscall = !is_indirect_call;
    #elif defined(__i386__)
    bool is_gs_call = false;
    if (code[codeIdx].len  == 7 &&
        code[codeIdx].insn == 0xFF &&
        code[codeIdx].addr[2] == '\x15' /* CALL (indirect) */ &&
        code[codeIdx].addr[0] == '\x65' /* %gs prefix */) {
      char* target;
      asm volatile("mov %%gs:(%1), %0\n"
                   : "=a"(target)
                   : "c"(*reinterpret_cast<int *>(code[codeIdx].addr+3)));
      if (target == __kernel_vsyscall) {
        is_gs_call = true;
        // TODO(markus): also handle the other vsyscalls
      }
    }
    if (is_gs_call ||
        (code[codeIdx].insn == 0xCD &&
         code[codeIdx].addr[1] == '\x80' /* INT $0x80 */)) {
    #else
    #error Unsupported target platform
    #endif
      // Found a system call. Search backwards to figure out how to redirect
      // the code. We will need to overwrite a couple of instructions and,
      // of course, move these instructions somewhere else.
      int startIdx = codeIdx;
      int endIdx = codeIdx;
      int length = code[codeIdx].len;
      for (int idx = codeIdx;
           (idx = (idx + (sizeof(code) / sizeof(struct Code)) - 1) %
                  (sizeof(code) / sizeof(struct Code))) != codeIdx; ) {
        std::set<char *>::const_iterator iter =
            std::upper_bound(branch_targets.begin(), branch_targets.end(),
                             code[idx].addr);
        if (iter != branch_targets.end() && *iter < ptr) {
          // Found a branch pointing to somewhere past our instruction. This
          // instruction cannot be moved safely. Leave it in place.
          break;
        }
        if (code[idx].addr && !code[idx].is_ip_relative &&
            isSafeInsn(code[idx].insn)) {
          // These are all benign instructions with no side-effects and no
          // dependency on the program counter. We should be able to safely
          // relocate them.
          startIdx = idx;
          length   = ptr - code[startIdx].addr;
        } else {
          break;
        }
      }
      // Search forward past the system call, too. Sometimes, we can only
      // find relocatable instructions following the system call.
      #if defined(__i386__)
   findEndIdx:
      #endif
      char *next = ptr;
      for (int i = codeIdx;
           next < end &&
           (i = (i + 1) % (sizeof(code) / sizeof(struct Code))) != startIdx;
           ) {
        std::set<char *>::const_iterator iter =
            std::lower_bound(branch_targets.begin(), branch_targets.end(),
                             next);
        if (iter != branch_targets.end() && *iter == next) {
          // Found branch target pointing to our instruction
          break;
        }
        char *tmp_rm;
        code[i].addr = next;
        code[i].insn = next_inst((const char **)&next, __WORDSIZE == 64,
                                 0, 0, &tmp_rm, 0, 0);
        code[i].len = next - code[i].addr;
        code[i].is_ip_relative = tmp_rm && (*tmp_rm & 0xC7) == 0x5;
        if (!code[i].is_ip_relative && isSafeInsn(code[i].insn)) {
          endIdx = i;
          length = next - code[startIdx].addr;
        } else {
          break;
        }
      }
      // We now know, how many instructions neighboring the system call we
      // can safely overwrite. On x86-32 we need six bytes, and on x86-64
      // We need five bytes to insert a JMPQ and a 32bit address. We then
      // jump to a code fragment that safely forwards to our system call
      // wrapper.
      // On x86-64, this is complicated by the fact that the API allows up
      // to 128 bytes of red-zones below the current stack pointer. So, we
      // cannot write to the stack until we have adjusted the stack
      // pointer.
      // On both x86-32 and x86-64 we take care to leave the stack unchanged
      // while we are executing the preamble and postamble. This allows us
      // to treat instructions that reference %esp/%rsp as safe for
      // relocation.
      // In particular, this means that on x86-32 we cannot use CALL, but
      // have to use a PUSH/RET combination to change the instruction pointer.
      // On x86-64, we can instead use a 32bit JMPQ.
      //
      // .. .. .. .. ; any leading instructions copied from original code
      // 48 81 EC 80 00 00 00        SUB  $0x80, %rsp
      // 50                          PUSH %rax
      // 48 8D 05 .. .. .. ..        LEA  ...(%rip), %rax
      // 50                          PUSH %rax
      // 48 B8 .. .. .. ..           MOV  $syscallWrapper, %rax
      // .. .. .. ..
      // 50                          PUSH %rax
      // 48 8D 05 06 00 00 00        LEA  6(%rip), %rax
      // 48 87 44 24 10              XCHG %rax, 16(%rsp)
      // C3                          RETQ
      // 48 81 C4 80 00 00 00        ADD  $0x80, %rsp
      // .. .. .. .. ; any trailing instructions copied from original code
      // E9 .. .. .. ..              JMPQ ...
      //
      // Total: 52 bytes + any bytes that were copied
      //
      // On x86-32, the stack is available and we can do:
      //
      // TODO(markus): Try to maintain frame pointers on x86-32
      //
      // .. .. .. .. ; any leading instructions copied from original code
      // 68 .. .. .. ..              PUSH return_addr
      // 68 .. .. .. ..              PUSH $syscallWrapper
      // C3                          RET
      // .. .. .. .. ; any trailing instructions copied from original code
      // 68 .. .. .. ..              PUSH return_addr
      // C3                          RET
      //
      // Total: 17 bytes + any bytes that were copied
      //
      // For indirect jumps from the VDSO to the VSyscall page, we instead
      // replace the following code (this is only necessary on x86-64). This
      // time, we don't have to worry about red zones:
      //
      // .. .. .. .. ; any leading instructions copied from original code
      // E8 00 00 00 00              CALL .
      // 48 83 04 24 ..              ADDQ $.., (%rsp)
      // FF .. .. .. .. ..           PUSH ..  ; from original CALL instruction
      // 48 81 3C 24 00 00 00 FF     CMPQ $0xFFFFFFFFFF000000, 0(%rsp)
      // 72 10                       JB   . + 16
      // 81 2C 24 .. .. .. ..        SUBL ..., 0(%rsp)
      // C7 44 24 04 00 00 00 00     MOVL $0, 4(%rsp)
      // C3                          RETQ
      // 48 87 04 24                 XCHG %rax,(%rsp)
      // 48 89 44 24 08              MOV  %rax,0x8(%rsp)
      // 58                          POP  %rax
      // C3                          RETQ
      // .. .. .. .. ; any trailing instructions copied from original code
      // E9 .. .. .. ..              JMPQ ...
      //
      // Total: 52 bytes + any bytes that were copied

      if (length < (__WORDSIZE == 32 ? 6 : 5)) {
        // There are a very small number of instruction sequences that we
        // cannot easily intercept, and that have been observed in real world
        // examples. Handle them here:
        #if defined(__i386__)
        int diff;
        if (!memcmp(code[codeIdx].addr, "\xCD\x80\xEB", 3) &&
            (diff = *reinterpret_cast<signed char *>(
                 code[codeIdx].addr + 3)) < 0 && diff >= -6) {
          // We have seen...
          //   for (;;) {
          //      _exit(0);
          //   }
          // ..get compiled to:
          //   B8 01 00 00 00      MOV  $__NR_exit, %eax
          //   66 90               XCHG %ax, %ax
          //   31 DB             0:XOR  %ebx, %ebx
          //   CD 80               INT  $0x80
          //   EB FA               JMP  0b
          // The JMP is really superfluous as the system call never returns.
          // And there are in fact no returning system calls that need to be
          // unconditionally repeated in an infinite loop.
          // If we replace the JMP with NOPs, the system call can successfully
          // be intercepted.
          *reinterpret_cast<unsigned short *>(code[codeIdx].addr + 2) = 0x9090;
          goto findEndIdx;
        }
        #elif defined(__x86_64__)
        std::set<char *>::const_iterator iter;
        #endif
        // If we cannot figure out any other way to intercept this system call,
        // we replace it with a call to INT0. This causes a SEGV which we then
        // handle in the signal handler. That's a lot slower than rewriting the
        // instruction with a jump, but it should only happen very rarely.
        if (is_syscall) {
          memcpy(code[codeIdx].addr, "\xCD", 2);
          if (code[codeIdx].len > 2) {
            memset(code[codeIdx].addr + 2, 0x90, code[codeIdx].len - 2);
          }
          goto replaced;
        }
        #if defined(__x86_64__)
        // On x86-64, we occasionally see code like this in the VDSO:
        //   48 8B 05 CF FE FF FF  MOV   -0x131(%rip),%rax
        //   FF 50 20              CALLQ *0x20(%rax)
        // By default, we would not replace the MOV instruction, as it is
        // IP relative. But if the following instruction is also IP relative,
        // we are left with only three bytes which is not enough to insert a
        // jump.
        // We recognize this particular situation, and as long as the CALLQ
        // is not a branch target, we decide to still relocate the entire
        // sequence. We just have to make sure that we then patch up the
        // IP relative addressing.
        else if (is_indirect_call && startIdx == codeIdx &&
                 code[startIdx = (startIdx + (sizeof(code) /
                                              sizeof(struct Code)) - 1) %
                      (sizeof(code) / sizeof(struct Code))].addr &&
                 ptr - code[startIdx].addr >= 5 &&
                 code[startIdx].is_ip_relative &&
                 isSafeInsn(code[startIdx].insn) &&
                 ((iter = std::upper_bound(branch_targets.begin(),
                                           branch_targets.end(),
                                           code[startIdx].addr)) ==
                  branch_targets.end() || *iter >= ptr)) {
          // We changed startIdx to include the IP relative instruction.
          // When copying this preamble, we make sure to patch up the
          // offset.
        }
        #endif
        else {
          Sandbox::die("Cannot intercept system call");
        }
      }
      int needed = (__WORDSIZE == 32 ? 6 : 5) - code[codeIdx].len;
      int first = codeIdx;
      while (needed > 0 && first != startIdx) {
        first = (first + (sizeof(code) / sizeof(struct Code)) - 1) %
                (sizeof(code) / sizeof(struct Code));
        needed -= code[first].len;
      }
      int second = codeIdx;
      while (needed > 0) {
        second = (second + 1) % (sizeof(code) / sizeof(struct Code));
        needed -= code[second].len;
      }
      int preamble = code[codeIdx].addr - code[first].addr;
      int postamble = code[second].addr + code[second].len -
                      code[codeIdx].addr - code[codeIdx].len;

      // The following is all the code that construct the various bits of
      // assembly code.
      #if defined(__x86_64__)
      if (is_indirect_call) {
        needed = 52 + preamble + code[codeIdx].len + postamble;
      } else {
        needed = 52 + preamble + postamble;
      }
      #elif defined(__i386__)
      needed = 17 + preamble + postamble;
      #else
      #error Unsupported target platform
      #endif

      // Allocate scratch space and copy the preamble of code that was moved
      // from the function that we are patching.
      char* dest = getScratchSpace(maps, code[first].addr, needed,
                                   extraSpace, extraLength);
      memcpy(dest, code[first].addr, preamble);

      // For jumps from the VDSO to the VSyscalls we sometimes allow exactly
      // one IP relative instruction in the preamble.
      if (code[first].is_ip_relative) {
        *reinterpret_cast<int *>(dest + (code[codeIdx].addr -
                                         code[first].addr) - 4)
          -= dest - code[first].addr;
      }

      // For indirect calls, we need to copy the actual CALL instruction and
      // turn it into a PUSH instruction.
      #if defined(__x86_64__)
      if (is_indirect_call) {
        memcpy(dest + preamble, "\xE8\x00\x00\x00\x00\x48\x83\x04\x24", 9);
        dest[preamble + 9] = code[codeIdx].len + 42;
        memcpy(dest + preamble + 10, code[codeIdx].addr, code[codeIdx].len);

        // Convert CALL -> PUSH
        dest[preamble + 10 + (mod_rm - code[codeIdx].addr)] |= 0x20;
        preamble += 10 + code[codeIdx].len;
      }
      #endif

      // Copy the static body of the assembly code.
      memcpy(dest + preamble,
           #if defined(__x86_64__)
           is_indirect_call ?
           "\x48\x81\x3C\x24\x00\x00\x00\xFF\x72\x10\x81\x2C\x24\x00\x00\x00"
           "\x00\xC7\x44\x24\x04\x00\x00\x00\x00\xC3\x48\x87\x04\x24\x48\x89"
           "\x44\x24\x08\x58\xC3" :
           "\x48\x81\xEC\x80\x00\x00\x00\x50\x48\x8D\x05\x00\x00\x00\x00\x50"
           "\x48\xB8\x00\x00\x00\x00\x00\x00\x00\x00\x50\x48\x8D\x05\x06\x00"
           "\x00\x00\x48\x87\x44\x24\x10\xC3\x48\x81\xC4\x80\x00\x00",
           is_indirect_call ? 37 : 47
           #elif defined(__i386__)
           "\x68\x00\x00\x00\x00\x68\x00\x00\x00\x00\xC3", 11
           #else
           #error Unsupported target platform
           #endif
           );

      // Copy the postamble that was moved from the function that we are
      // patching.
      memcpy(dest + preamble +
             #if defined(__x86_64__)
             (is_indirect_call ? 37 : 47),
             #elif defined(__i386__)
             11,
             #else
             #error Unsupported target platform
             #endif
             code[codeIdx].addr + code[codeIdx].len,
             postamble);

      // Patch up the various computed values
      #if defined(__x86_64__)
      int post = preamble + (is_indirect_call ? 37 : 47) + postamble;
      dest[post] = '\xE9';
      *reinterpret_cast<int *>(dest + post + 1) =
          (code[second].addr + code[second].len) - (dest + post + 5);
      if (is_indirect_call) {
        *reinterpret_cast<int *>(dest + preamble + 13) = vsys_offset_;
      } else {
        *reinterpret_cast<int *>(dest + preamble + 11) =
            (code[second].addr + code[second].len) - (dest + preamble + 15);
        *reinterpret_cast<void **>(dest + preamble + 18) =
            reinterpret_cast<void *>(&syscallWrapper);
      }
      #elif defined(__i386__)
      *(dest + preamble + 11 + postamble) = '\x68'; // PUSH
      *reinterpret_cast<char **>(dest + preamble + 12 + postamble) =
          code[second].addr + code[second].len;
      *(dest + preamble + 16 + postamble) = '\xC3'; // RET
      *reinterpret_cast<char **>(dest + preamble + 1) =
          dest + preamble + 11;
      *reinterpret_cast<void (**)()>(dest + preamble + 6) = syscallWrapper;
      #else
      #error Unsupported target platform
      #endif

      // Pad unused space in the original function with NOPs
      memset(code[first].addr, 0x90 /* NOP */,
             code[second].addr + code[second].len - code[first].addr);

      // Replace the system call with an unconditional jump to our new code.
      #if defined(__x86_64__)
      *code[first].addr = '\xE9';   // JMPQ
      *reinterpret_cast<int *>(code[first].addr + 1) =
          dest - (code[first].addr + 5);
      #elif defined(__i386__)
      code[first].addr[0] = '\x68'; // PUSH
      *reinterpret_cast<char **>(code[first].addr + 1) = dest;
      code[first].addr[5] = '\xC3'; // RET
      #else
      #error Unsupported target platform
      #endif
    }
   replaced:
    codeIdx = (codeIdx + 1) % (sizeof(code) / sizeof(struct Code));
  }
}

void Library::patchVDSO(char** extraSpace, int* extraLength){
  #if defined(__i386__)
  Sandbox::SysCalls sys;
  if (!__kernel_vsyscall ||
      sys.mprotect(reinterpret_cast<void *>(
                     reinterpret_cast<long>(__kernel_vsyscall) & ~0xFFF),
                   4096, PROT_READ|PROT_WRITE|PROT_EXEC)) {
    return;
  }

  // x86-32 has a small number of well-defined functions in the VDSO library.
  // These functions do not easily lend themselves to be rewritten by the
  // automatic code. Instead, we explicitly find new definitions for them.
  //
  // We don't bother with optimizing the syscall instruction instead always
  // use INT $0x80, no matter whether the hardware supports more modern
  // calling conventions.
  //
  // TODO(markus): Investigate whether it is worthwhile to optimize this
  // code path and use the platform-specific entry code.
  if (__kernel_vsyscall) {
    // Replace the kernel entry point with:
    //
    // E9 .. .. .. ..    JMP syscallWrapper
    *__kernel_vsyscall = '\xE9';
    *reinterpret_cast<long *>(__kernel_vsyscall + 1) =
        reinterpret_cast<char *>(&syscallWrapper) -
        reinterpret_cast<char *>(__kernel_vsyscall + 5);
  }
  if (__kernel_sigreturn) {
    // Replace the sigreturn() system call with a jump to code that does:
    //
    // 58                POP %eax
    // B8 77 00 00 00    MOV $0x77, %eax
    // E9 .. .. .. ..    JMP syscallWrapper
    char* dest = getScratchSpace(maps_, __kernel_sigreturn, 11, extraSpace,
                                 extraLength);
    memcpy(dest, "\x58\xB8\x77\x00\x00\x00\xE9", 7);
    *reinterpret_cast<char *>(dest + 7) =
        reinterpret_cast<char *>(&syscallWrapper) -
        reinterpret_cast<char *>(dest + 11);
    *__kernel_sigreturn = '\xE9';
    *reinterpret_cast<char *>(__kernel_sigreturn + 1) =
        dest - reinterpret_cast<char *>(__kernel_sigreturn + 5);
  }
  if (__kernel_rt_sigreturn) {
    // Replace the rt_sigreturn() system call with a jump to code that does:
    //
    // B8 AD 00 00 00    MOV $0xAD, %eax
    // E9 .. .. .. ..    JMP syscallWrapper
    char* dest = getScratchSpace(maps_, __kernel_rt_sigreturn, 10, extraSpace,
                                 extraLength);
    memcpy(dest, "\xB8\xAD\x00\x00\x00\xE9", 6);
    *reinterpret_cast<char *>(dest + 6) =
        reinterpret_cast<char *>(&syscallWrapper) -
        reinterpret_cast<char *>(dest + 10);
    *__kernel_rt_sigreturn = '\xE9';
    *reinterpret_cast<char *>(__kernel_rt_sigreturn + 1) =
        dest - reinterpret_cast<char *>(__kernel_rt_sigreturn + 5);
  }
  #endif
}

int Library::patchVSystemCalls() {
  #if defined(__x86_64__)
  // VSyscalls live in a shared 4kB page at the top of the address space. This
  // page cannot be unmapped nor remapped. We have to create a copy within
  // 2GB of the page, and rewrite all IP-relative accesses to shared variables.
  // As the top of the address space is not accessible by mmap(), this means
  // that we need to wrap around addresses to the bottom 2GB of the address
  // space.
  // Only x86-64 has VSyscalls.
  if (maps_->vsyscall()) {
    char* copy = maps_->allocNearAddr(maps_->vsyscall(), 0x1000,
                                      PROT_READ|PROT_WRITE|PROT_EXEC);
    char* extraSpace = copy;
    int extraLength = 0x1000;
    memcpy(copy, maps_->vsyscall(), 0x1000);
    long adjust = (long)maps_->vsyscall() - (long)copy;
    for (int vsys = 0; vsys < 0x1000; vsys += 0x400) {
      char* start = copy + vsys;
      char* end   = start + 0x400;

      // There can only be up to four VSyscalls starting at an offset of
      // n*0x1000, each. VSyscalls are invoked by functions in the VDSO
      // and provide fast implementations of a time source. We don't exactly
      // know where the code and where the data is in the VSyscalls page.
      // So, we disassemble the code for each function and find all branch
      // targets within the function in order to find the last address of
      // function.
      for (char *last = start, *vars = end, *ptr = start; ptr < end; ) {
     new_function:
        char* mod_rm;
        unsigned short insn = next_inst((const char **)&ptr, true, 0, 0,
                                        &mod_rm, 0, 0);
        if (mod_rm && (*mod_rm & 0xC7) == 0x5) {
          // Instruction has IP relative addressing mode. Adjust to reference
          // the variables in the original VSyscall segment.
          long offset = *reinterpret_cast<int *>(mod_rm + 1);
          char* var = ptr + offset;
          if (var >= ptr && var < vars) {
            // Variables are stored somewhere past all the functions. Remember
            // the first variable in the VSyscall slot, so that we stop
            // scanning for instructions once we reach that address.
            vars = var;
          }
          offset += adjust;
          if ((offset >> 32) && (offset >> 32) != -1) {
            Sandbox::die("Cannot patch [vsystemcall]");
          }
          *reinterpret_cast<int *>(mod_rm + 1) = offset;
        }

        // Check for jump targets to higher addresses (but within our own
        // VSyscall slot). They extend the possible end-address of this
        // function.
        char *target = 0;
        if ((insn >= 0x70 && insn <= 0x7F) /* Jcc */ ||
            insn == 0xEB /* JMP */) {
          target = ptr + (reinterpret_cast<signed char *>(ptr))[-1];
        } else if (insn == 0xE8 /* CALL */ || insn == 0xE9 /* JMP */ ||
                   (insn >= 0x0F80 && insn <= 0x0F8F) /* Jcc */) {
          target = ptr + (reinterpret_cast<int *>(ptr))[-1];
        }

        // The function end is found, once the loop reaches the last valid
        // address in the VSyscall slot, or once it finds a RET instruction
        // that is not followed by any jump targets. Unconditional jumps that
        // point backwards are treated the same as a RET instruction.
        if (insn == 0xC3 /* RET */ ||
            (target < ptr &&
             (insn == 0xEB /* JMP */ || insn == 0xE9 /* JMP */))) {
          if (last >= ptr) {
            continue;
          } else {
            // The function can optionally be followed by more functions in
            // the same VSyscall slot. Allow for alignment to a 16 byte
            // boundary. If we then find more non-zero bytes, and if this is
            // not the known start of the variables, assume a new function
            // started.
            for (; ptr < vars; ++ptr) {
              if ((long)ptr & 0xF) {
                if (*ptr && *ptr != '\x90' /* NOP */) {
                  goto new_function;
                }
                *ptr = '\x90'; // NOP
              } else {
                if (*ptr && *ptr != '\x90' /* NOP */) {
                  goto new_function;
                }
                break;
              }
            }

            // Translate all SYSCALLs to jumps into our system call handler.
            patchSystemCallsInFunction(NULL, start, ptr,
                                       &extraSpace, &extraLength);
            break;
          }
        }

        // Adjust assumed end address for this function, if a valid jump
        // target has been found that originates from the current instruction.
        if (target > last && target < start + 0x100) {
          last = target;
        }
      }
    }

    // We are done. Write-protect our code and make it executable.
    Sandbox::SysCalls sys;
    sys.mprotect(copy, 0x1000, PROT_READ|PROT_EXEC);
    return maps_->vsyscall() - copy;
  }
  #endif
  return 0;
}

void Library::patchSystemCalls() {
  if (!valid_) {
    return;
  }
  int extraLength = 0;
  char* extraSpace = NULL;
  if (isVDSO_) {
    // patchVDSO() calls patchSystemCallsInFunction() which needs vsys_offset_
    // iff processing the VDSO library. So, make sure we call
    // patchVSystemCalls() first.
    vsys_offset_ = patchVSystemCalls();
    #if defined(__i386__)
    patchVDSO(&extraSpace, &extraLength);
    return;
    #endif
  }
  SectionTable::const_iterator iter;
  if ((iter = section_table_.find(".text")) == section_table_.end()) {
    return;
  }
  const Elf_Shdr& shdr = iter->second.second;
  char* start = reinterpret_cast<char *>(shdr.sh_addr + asr_offset_);
  char* stop = start + shdr.sh_size;
  char* func = start;
  int nopcount = 0;
  bool has_syscall = false;
  for (char *ptr = start; ptr < stop; ptr++) {
    #if defined(__x86_64__)
    if ((*ptr == '\x0F' && ptr[1] == '\x05' /* SYSCALL */) ||
        (isVDSO_ && *ptr == '\xFF')) {
    #elif defined(__i386__)
    if ((*ptr   == '\xCD' && ptr[1] == '\x80' /* INT $0x80 */) ||
        (*ptr   == '\x65' && ptr[1] == '\xFF' &&
         ptr[2] == '\x15' /* CALL %gs:.. */)) {
    #else
    #error Unsupported target platform
    #endif
      ptr++;
      has_syscall = true;
      nopcount    = 0;
    } else if (*ptr == '\x90' /* NOP */) {
      nopcount++;
    } else if (!(reinterpret_cast<long>(ptr) & 0xF)) {
      if (nopcount > 2) {
        // This is very likely the beginning of a new function. Functions
        // are aligned on 16 byte boundaries and the preceding function is
        // padded out with NOPs.
        //
        // For performance reasons, we quickly scan the entire text segment
        // for potential SYSCALLs, and then patch the code in increments of
        // individual functions.
        if (has_syscall) {
          has_syscall = false;
          // Our quick scan of the function found a potential system call.
          // Do a more thorough scan, now.
          patchSystemCallsInFunction(maps_, func, ptr, &extraSpace,
                                     &extraLength);
        }
        func = ptr;
      }
      nopcount = 0;
    } else {
      nopcount = 0;
    }
  }
  if (has_syscall) {
    // Patch any remaining system calls that were in the last function before
    // the loop terminated.
    patchSystemCallsInFunction(maps_, func, stop, &extraSpace, &extraLength);
  }

  // Mark our scratch space as write-protected and executable.
  if (extraSpace) {
    Sandbox::SysCalls sys;
    sys.mprotect(extraSpace, 4096, PROT_READ|PROT_EXEC);
  }
}

bool Library::parseElf() {
  valid_ = true;

  // Verify ELF header
  Elf_Shdr str_shdr;
  if (!getOriginal(0, &ehdr_) ||
      ehdr_.e_ehsize < sizeof(Elf_Ehdr) ||
      ehdr_.e_phentsize < sizeof(Elf_Phdr) ||
      ehdr_.e_shentsize < sizeof(Elf_Shdr) ||
      !getOriginal(ehdr_.e_shoff + ehdr_.e_shstrndx * ehdr_.e_shentsize,
                   &str_shdr)) {
    // Not all memory mappings are necessarily ELF files. Skip memory
    // mappings that we cannot identify.
 error:
    valid_ = false;
    return false;
  }

  // Parse section table and find all sections in this ELF file
  for (int i = 0; i < ehdr_.e_shnum; i++) {
    Elf_Shdr shdr;
    if (!getOriginal(ehdr_.e_shoff + i*ehdr_.e_shentsize, &shdr)) {
      continue;
    }
    section_table_.insert(
       std::make_pair(getOriginal(str_shdr.sh_offset + shdr.sh_name),
                      std::make_pair(i, shdr)));
  }

  // Compute the offset of entries in the .text segment
  const Elf_Shdr* text = getSection(".text");
  if (text == NULL) {
    // On x86-32, the VDSO is unusual in as much as it does not have a single
    // ".text" section. Instead, it has one section per function. Each
    // section name starts with ".text". We just need to pick an arbitrary
    // one in order to find the asr_offset_ -- which would typically be zero
    // for the VDSO.
    for (SectionTable::const_iterator iter = section_table_.begin();
         iter != section_table_.end(); ++iter) {
      if (!strncmp(iter->first.c_str(), ".text", 5)) {
        text = &iter->second.second;
        break;
      }
    }
  }

  // Now that we know where the .text segment is located, we can compute the
  // asr_offset_.
  if (text) {
    RangeMap::const_iterator iter =
        memory_ranges_.lower_bound(text->sh_offset);
    if (iter != memory_ranges_.end()) {
      asr_offset_ = reinterpret_cast<char *>(iter->second.start) -
          (text->sh_addr - (text->sh_offset - iter->first));
    } else {
      goto error;
    }
  } else {
    goto error;
  }

  return !isVDSO_ || parseSymbols();
}

bool Library::parseSymbols() {
  if (!valid_) {
    return false;
  }

  Elf_Shdr str_shdr;
  getOriginal(ehdr_.e_shoff + ehdr_.e_shstrndx * ehdr_.e_shentsize, &str_shdr);

  // Find PLT and symbol tables
  const Elf_Shdr* plt = getSection(ELF_REL_PLT);
  const Elf_Shdr* symtab = getSection(".dynsym");
  Elf_Shdr strtab = { 0 };
  if (symtab) {
    if (symtab->sh_link >= ehdr_.e_shnum ||
        !getOriginal(ehdr_.e_shoff + symtab->sh_link * ehdr_.e_shentsize,
                     &strtab)) {
      Debug::message("Cannot find valid symbol table\n");
      valid_ = false;
      return false;
    }
  }

  if (plt && symtab) {
    // Parse PLT table and add its entries
    for (int i = plt->sh_size/sizeof(Elf_Rel); --i >= 0; ) {
      Elf_Rel rel;
      if (!getOriginal(plt->sh_offset + i * sizeof(Elf_Rel), &rel) ||
          ELF_R_SYM(rel.r_info)*sizeof(Elf_Sym) >= symtab->sh_size) {
        Debug::message("Encountered invalid plt entry\n");
        valid_ = false;
        return false;
      }

      if (ELF_R_TYPE(rel.r_info) != ELF_JUMP_SLOT) {
        continue;
      }
      Elf_Sym sym;
      if (!getOriginal(symtab->sh_offset +
                       ELF_R_SYM(rel.r_info)*sizeof(Elf_Sym), &sym) ||
          sym.st_shndx >= ehdr_.e_shnum) {
        Debug::message("Encountered invalid symbol for plt entry\n");
        valid_ = false;
        return false;
      }
      string name = getOriginal(strtab.sh_offset + sym.st_name);
      if (name.empty()) {
        continue;
      }
      plt_entries_.insert(std::make_pair(name, rel.r_offset));
    }
  }

  if (symtab) {
    // Parse symbol table and add its entries
    for (Elf_Addr addr = 0; addr < symtab->sh_size; addr += sizeof(Elf_Sym)) {
      Elf_Sym sym;
      if (!getOriginal(symtab->sh_offset + addr, &sym) ||
          (sym.st_shndx >= ehdr_.e_shnum &&
           sym.st_shndx < SHN_LORESERVE)) {
        Debug::message("Encountered invalid symbol\n");
        valid_ = false;
        return false;
      }
      string name = getOriginal(strtab.sh_offset + sym.st_name);
      if (name.empty()) {
        continue;
      }
      symbols_.insert(std::make_pair(name, sym));
    }
  }

  SymbolTable::const_iterator iter = symbols_.find("__kernel_vsyscall");
  if (iter != symbols_.end() && iter->second.st_value) {
    __kernel_vsyscall = asr_offset_ + iter->second.st_value;
  }
  iter = symbols_.find("__kernel_sigreturn");
  if (iter != symbols_.end() && iter->second.st_value) {
    __kernel_sigreturn = asr_offset_ + iter->second.st_value;
  }
  iter = symbols_.find("__kernel_rt_sigreturn");
  if (iter != symbols_.end() && iter->second.st_value) {
    __kernel_rt_sigreturn = asr_offset_ + iter->second.st_value;
  }

  return true;
}

} // namespace