1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
#include <errno.h>
#include <fcntl.h>
#include <iostream>
#include <linux/unistd.h>
#include <signal.h>
#include <stdarg.h>
#include <stdlib.h>
#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/wait.h>
#include "library.h"
#include "maps.h"
#include "sandbox_impl.h"
namespace playground {
Maps::Maps(int proc_self_maps) :
proc_self_maps_(proc_self_maps),
begin_iter_(this, true, false),
end_iter_(this, false, true),
vsyscall_(0) {
Sandbox::SysCalls sys;
if (proc_self_maps_ >= 0 &&
!sys.lseek(proc_self_maps_, 0, SEEK_SET)) {
char buf[256] = { 0 };
int len = 0, rc = 1;
bool long_line = false;
do {
if (rc > 0) {
rc = Sandbox::read(sys, proc_self_maps_, buf + len,
sizeof(buf) - len - 1);
if (rc > 0) {
len += rc;
}
}
char *ptr = buf;
if (!long_line) {
long_line = true;
unsigned long start = strtoul(ptr, &ptr, 16);
unsigned long stop = strtoul(ptr + 1, &ptr, 16);
while (*ptr == ' ' || *ptr == '\t') ++ptr;
char *perm_ptr = ptr;
while (*ptr && *ptr != ' ' && *ptr != '\t') ++ptr;
std::string perm(perm_ptr, ptr - perm_ptr);
unsigned long offset = strtoul(ptr, &ptr, 16);
while (*ptr == ' ' || *ptr == '\t') ++ptr;
char *id_ptr = ptr;
while (*ptr && *ptr != ' ' && *ptr != '\t') ++ptr;
while (*ptr == ' ' || *ptr == '\t') ++ptr;
while (*ptr && *ptr != ' ' && *ptr != '\t') ++ptr;
std::string id(id_ptr, ptr - id_ptr);
while (*ptr == ' ' || *ptr == '\t') ++ptr;
char *library_ptr = ptr;
while (*ptr && *ptr != ' ' && *ptr != '\t' && *ptr != '\n') ++ptr;
std::string library(library_ptr, ptr - library_ptr);
bool isVDSO = false;
if (library == "[vdso]") {
// /proc/self/maps has a misleading file offset in the [vdso] entry.
// Override it with a sane value.
offset = 0;
isVDSO = true;
} else if (library == "[vsyscall]") {
vsyscall_ = reinterpret_cast<char *>(start);
} else if (library.empty() || library[0] == '[') {
goto skip_entry;
}
int prot = 0;
if (perm.find('r') != std::string::npos) {
prot |= PROT_READ;
}
if (perm.find('w') != std::string::npos) {
prot |= PROT_WRITE;
}
if (perm.find('x') != std::string::npos) {
prot |= PROT_EXEC;
}
if ((prot & (PROT_EXEC | PROT_READ)) == 0) {
goto skip_entry;
}
Library* lib = &libs_[id + ' ' + library];
lib->setLibraryInfo(this);
lib->addMemoryRange(reinterpret_cast<void *>(start),
reinterpret_cast<void *>(stop),
Elf_Addr(offset),
prot, isVDSO);
}
skip_entry:
for (;;) {
if (!*ptr || *ptr++ == '\n') {
long_line = false;
memmove(buf, ptr, len - (ptr - buf));
memset(buf + len - (ptr - buf), 0, ptr - buf);
len -= (ptr - buf);
break;
}
}
} while (len || long_line);
}
}
Maps::Iterator::Iterator(Maps* maps, bool at_beginning, bool at_end)
: maps_(maps),
at_beginning_(at_beginning),
at_end_(at_end) {
}
Maps::LibraryMap::iterator& Maps::Iterator::getIterator() const {
if (at_beginning_) {
iter_ = maps_->libs_.begin();
} else if (at_end_) {
iter_ = maps_->libs_.end();
}
return iter_;
}
Maps::Iterator Maps::Iterator::begin() {
return maps_->begin_iter_;
}
Maps::Iterator Maps::Iterator::end() {
return maps_->end_iter_;
}
Maps::Iterator& Maps::Iterator::operator++() {
getIterator().operator++();
at_beginning_ = false;
return *this;
}
Maps::Iterator Maps::Iterator::operator++(int i) {
getIterator().operator++(i);
at_beginning_ = false;
return *this;
}
Library* Maps::Iterator::operator*() const {
return &getIterator().operator*().second;
}
bool Maps::Iterator::operator==(const Maps::Iterator& iter) const {
return getIterator().operator==(iter.getIterator());
}
bool Maps::Iterator::operator!=(const Maps::Iterator& iter) const {
return !operator==(iter);
}
std::string Maps::Iterator::name() const {
return getIterator()->first;
}
// Test whether a line ends with "[stack]"; used for identifying the
// stack entry of /proc/self/maps.
static bool isStackLine(char* buf, char* end) {
char* ptr = buf;
for ( ; *ptr != '\n' && ptr < end; ++ptr)
;
if (ptr < end && ptr - 7 > buf) {
return (memcmp(ptr - 7, "[stack]", 7) == 0);
}
return false;
}
char* Maps::allocNearAddr(char* addr_target, size_t size, int prot) const {
// We try to allocate memory within 1.5GB of a target address. This means,
// we will be able to perform relative 32bit jumps from the target address.
const unsigned long kMaxDistance = 1536 << 20;
// In most of the code below, we just care about the numeric value of
// the address.
const long addr = reinterpret_cast<long>(addr_target);
size = (size + 4095) & ~4095;
Sandbox::SysCalls sys;
if (sys.lseek(proc_self_maps_, 0, SEEK_SET)) {
return NULL;
}
// Iterate through lines of /proc/self/maps to consider each mapped
// region one at a time, looking for a gap between regions to allocate.
char buf[256] = { 0 };
int len = 0, rc = 1;
bool long_line = false;
unsigned long gap_start = 0x10000;
void* new_addr;
do {
if (rc > 0) {
do {
rc = Sandbox::read(sys, proc_self_maps_, buf + len,
sizeof(buf) - len - 1);
if (rc > 0) {
len += rc;
}
} while (rc > 0 && len < (int)sizeof(buf) - 1);
}
char *ptr = buf;
if (!long_line) {
long_line = true;
// Maps lines have the form "<start address>-<end address> ... <name>".
unsigned long gap_end = strtoul(ptr, &ptr, 16);
unsigned long map_end = strtoul(ptr + 1, &ptr, 16);
// gap_start to gap_end now covers the region of empty space before
// the current line. Now we try to see if there's a place within the
// gap we can use.
if (gap_end - gap_start >= size) {
// Is the gap before our target address?
if (addr - static_cast<long>(gap_end) >= 0) {
if (addr - (gap_end - size) < kMaxDistance) {
unsigned long position;
if (isStackLine(ptr, buf + len)) {
// If we're adjacent to the stack, try to stay away from
// the GROWS_DOWN region. Pick the farthest away region that
// is still within the gap.
if (static_cast<unsigned long>(addr) < kMaxDistance || // Underflow protection.
static_cast<unsigned long>(addr) - kMaxDistance < gap_start) {
position = gap_start;
} else {
position = addr - kMaxDistance;
}
} else {
// Otherwise, take the end of the region.
position = gap_end - size;
}
new_addr = reinterpret_cast<char *>(sys.MMAP
(reinterpret_cast<void *>(position), size, prot,
MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED, -1, 0));
if (new_addr != MAP_FAILED) {
goto done;
}
}
} else if (gap_start + size - addr < kMaxDistance) {
// Gap is after the address. Above checks that we can wrap around
// through 0 to a space we'd use.
new_addr = reinterpret_cast<char *>(sys.MMAP
(reinterpret_cast<void *>(gap_start), size, prot,
MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED, -1 ,0));
if (new_addr != MAP_FAILED) {
goto done;
}
}
}
gap_start = map_end;
}
for (;;) {
if (!*ptr || *ptr++ == '\n') {
long_line = false;
memmove(buf, ptr, len - (ptr - buf));
memset(buf + len - (ptr - buf), 0, ptr - buf);
len -= (ptr - buf);
break;
}
}
} while (len || long_line);
new_addr = NULL;
done:
return reinterpret_cast<char*>(new_addr);
}
} // namespace
|