1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
|
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "library.h"
#include "sandbox_impl.h"
#include "syscall_table.h"
namespace playground {
// Global variables
int Sandbox::proc_self_maps_ = -1;
enum Sandbox::SandboxStatus Sandbox::status_ = STATUS_UNKNOWN;
int Sandbox::pid_;
int Sandbox::processFdPub_;
int Sandbox::cloneFdPub_;
Sandbox::SysCalls::kernel_sigaction Sandbox::sa_segv_;
Sandbox::ProtectedMap Sandbox::protectedMap_;
std::vector<SecureMem::Args*> Sandbox::secureMemPool_;
bool Sandbox::sendFd(int transport, int fd0, int fd1, const void* buf,
size_t len) {
int fds[2], count = 0;
if (fd0 >= 0) { fds[count++] = fd0; }
if (fd1 >= 0) { fds[count++] = fd1; }
if (!count) {
return false;
}
char cmsg_buf[CMSG_SPACE(count*sizeof(int))];
memset(cmsg_buf, 0, sizeof(cmsg_buf));
struct SysCalls::kernel_iovec iov[2] = { { 0 } };
struct SysCalls::kernel_msghdr msg = { 0 };
int dummy = 0;
iov[0].iov_base = &dummy;
iov[0].iov_len = sizeof(dummy);
if (buf && len > 0) {
iov[1].iov_base = const_cast<void *>(buf);
iov[1].iov_len = len;
}
msg.msg_iov = iov;
msg.msg_iovlen = (buf && len > 0) ? 2 : 1;
msg.msg_control = cmsg_buf;
msg.msg_controllen = CMSG_LEN(count*sizeof(int));
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
cmsg->cmsg_len = CMSG_LEN(count*sizeof(int));
memcpy(CMSG_DATA(cmsg), fds, count*sizeof(int));
SysCalls sys;
return NOINTR_SYS(sys.sendmsg(transport, &msg, 0)) ==
(ssize_t)(sizeof(dummy) + ((buf && len > 0) ? len : 0));
}
bool Sandbox::getFd(int transport, int* fd0, int* fd1, void* buf, size_t*len) {
int count = 0;
int *err = NULL;
if (fd0) {
count++;
err = fd0;
*fd0 = -1;
}
if (fd1) {
if (!count++) {
err = fd1;
}
*fd1 = -1;
}
if (!count) {
return false;
}
char cmsg_buf[CMSG_SPACE(count*sizeof(int))];
memset(cmsg_buf, 0, sizeof(cmsg_buf));
struct SysCalls::kernel_iovec iov[2] = { { 0 } };
struct SysCalls::kernel_msghdr msg = { 0 };
iov[0].iov_base = err;
iov[0].iov_len = sizeof(int);
if (buf && len && *len > 0) {
iov[1].iov_base = buf;
iov[1].iov_len = *len;
}
msg.msg_iov = iov;
msg.msg_iovlen = (buf && len && *len > 0) ? 2 : 1;
msg.msg_control = cmsg_buf;
msg.msg_controllen = CMSG_LEN(count*sizeof(int));
SysCalls sys;
ssize_t bytes = NOINTR_SYS(sys.recvmsg(transport, &msg, 0));
if (len) {
*len = bytes > (int)sizeof(int) ?
bytes - sizeof(int) : 0;
}
if (bytes != (ssize_t)(sizeof(int) + ((buf && len && *len > 0) ? *len : 0))){
*err = bytes >= 0 ? 0 : -EBADF;
return false;
}
if (*err) {
// "err" is the first four bytes of the payload. If these are non-zero,
// the sender on the other side of the socketpair sent us an errno value.
// We don't expect to get any file handles in this case.
return false;
}
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
if ((msg.msg_flags & (MSG_TRUNC|MSG_CTRUNC)) ||
!cmsg ||
cmsg->cmsg_level != SOL_SOCKET ||
cmsg->cmsg_type != SCM_RIGHTS ||
cmsg->cmsg_len != CMSG_LEN(count*sizeof(int))) {
*err = -EBADF;
return false;
}
if (fd1) { *fd1 = ((int *)CMSG_DATA(cmsg))[--count]; }
if (fd0) { *fd0 = ((int *)CMSG_DATA(cmsg))[--count]; }
return true;
}
void Sandbox::setupSignalHandlers() {
// Set SIGCHLD to SIG_DFL so that waitpid() can work
SysCalls sys;
struct SysCalls::kernel_sigaction sa;
memset(&sa, 0, sizeof(sa));
sa.sa_handler_ = SIG_DFL;
sys.sigaction(SIGCHLD, &sa, NULL);
// Set up SEGV handler for dealing with RDTSC instructions, system calls
// that have been rewritten to use INT0, for sigprocmask() emulation, for
// the creation of threads, and for user-provided SEGV handlers.
sa.sa_sigaction_ = segv();
sa.sa_flags = SA_SIGINFO | SA_NODEFER;
sys.sigaction(SIGSEGV, &sa, &sa_segv_);
// Unblock SIGSEGV and SIGCHLD
SysCalls::kernel_sigset_t mask;
memset(&mask, 0x00, sizeof(mask));
mask.sig[0] |= (1 << (SIGSEGV - 1)) | (1 << (SIGCHLD - 1));
sys.sigprocmask(SIG_UNBLOCK, &mask, 0);
}
void (*Sandbox::segv())(int signo, SysCalls::siginfo *context, void *unused) {
void (*fnc)(int signo, SysCalls::siginfo *context, void *unused);
asm volatile(
"call 999f\n"
#if defined(__x86_64__)
// Inspect instruction at the point where the segmentation fault
// happened. If it is RDTSC, forward the request to the trusted
// thread.
"mov $-3, %%r14\n" // request for RDTSC
"mov 0xB0(%%rsp), %%r15\n" // %rip at time of segmentation fault
"cmpw $0x310F, (%%r15)\n" // RDTSC
"jz 0f\n"
"cmpw $0x010F, (%%r15)\n" // RDTSCP
"jnz 8f\n"
"cmpb $0xF9, 2(%%r15)\n"
"jnz 8f\n"
"mov $-4, %%r14\n" // request for RDTSCP
"0:"
#ifndef NDEBUG
"lea 100f(%%rip), %%rdi\n"
"call playground$debugMessage\n"
#endif
"sub $4, %%rsp\n"
"push %%r14\n"
"mov %%gs:16, %%edi\n" // fd = threadFdPub
"mov %%rsp, %%rsi\n" // buf = %rsp
"mov $4, %%edx\n" // len = sizeof(int)
"1:mov $1, %%eax\n" // NR_write
"syscall\n"
"cmp %%rax, %%rdx\n"
"jz 5f\n"
"cmp $-4, %%eax\n" // EINTR
"jz 1b\n"
"2:add $12, %%rsp\n"
"movq $0, 0x98(%%rsp)\n" // %rax at time of segmentation fault
"movq $0, 0x90(%%rsp)\n" // %rdx at time of segmentation fault
"cmpw $0x310F, (%%r15)\n" // RDTSC
"jz 3f\n"
"movq $0, 0xA0(%%rsp)\n" // %rcx at time of segmentation fault
"3:addq $2, 0xB0(%%rsp)\n" // %rip at time of segmentation fault
"cmpw $0x010F, (%%r15)\n" // RDTSC
"jnz 4f\n"
"addq $1, 0xB0(%%rsp)\n" // %rip at time of segmentation fault
"4:ret\n"
"5:mov $12, %%edx\n" // len = 3*sizeof(int)
"6:mov $0, %%eax\n" // NR_read
"syscall\n"
"cmp $-4, %%eax\n" // EINTR
"jz 6b\n"
"cmp %%rax, %%rdx\n"
"jnz 2b\n"
"mov 0(%%rsp), %%eax\n"
"mov 4(%%rsp), %%edx\n"
"mov 8(%%rsp), %%ecx\n"
"add $12, %%rsp\n"
"mov %%rdx, 0x90(%%rsp)\n" // %rdx at time of segmentation fault
"cmpw $0x310F, (%%r15)\n" // RDTSC
"jz 7f\n"
"mov %%rcx, 0xA0(%%rsp)\n" // %rcx at time of segmentation fault
"7:mov %%rax, 0x98(%%rsp)\n" // %rax at time of segmentation fault
"jmp 3b\n"
// If the instruction is INT 0, then this was probably the result
// of playground::Library being unable to find a way to safely
// rewrite the system call instruction. Retrieve the CPU register
// at the time of the segmentation fault and invoke syscallWrapper().
"8:cmpw $0x00CD, (%%r15)\n" // INT $0x0
"jnz 16f\n"
#ifndef NDEBUG
"lea 200f(%%rip), %%rdi\n"
"call playground$debugMessage\n"
#endif
"mov 0x98(%%rsp), %%rax\n" // %rax at time of segmentation fault
"mov 0x70(%%rsp), %%rdi\n" // %rdi at time of segmentation fault
"mov 0x78(%%rsp), %%rsi\n" // %rsi at time of segmentation fault
"mov 0x90(%%rsp), %%rdx\n" // %rdx at time of segmentation fault
"mov 0x40(%%rsp), %%r10\n" // %r10 at time of segmentation fault
"mov 0x30(%%rsp), %%r8\n" // %r8 at time of segmentation fault
"mov 0x38(%%rsp), %%r9\n" // %r9 at time of segmentation fault
// Handle rt_sigprocmask()
"cmp $14, %%rax\n" // NR_rt_sigprocmask
"jnz 12f\n"
"mov $-22, %%rax\n" // -EINVAL
"cmp $8, %%r10\n" // %r10 = sigsetsize (8 bytes = 64 signals)
"jl 7b\n"
"mov 0x130(%%rsp), %%r10\n" // signal mask at time of segmentation fault
"test %%rsi, %%rsi\n" // only set mask, if set is non-NULL
"jz 11f\n"
"mov 0(%%rsi), %%rsi\n"
"cmp $0, %%rdi\n" // %rdi = how (SIG_BLOCK)
"jnz 9f\n"
"or %%rsi, 0x130(%%rsp)\n" // signal mask at time of segmentation fault
"jmp 11f\n"
"9:cmp $1, %%rdi\n" // %rdi = how (SIG_UNBLOCK)
"jnz 10f\n"
"xor $-1, %%rsi\n"
"and %%rsi, 0x130(%%rsp)\n" // signal mask at time of segmentation fault
"jmp 11f\n"
"10:cmp $2, %%rdi\n" // %rdi = how (SIG_SETMASK)
"jnz 7b\n"
"mov %%rsi, 0x130(%%rsp)\n" // signal mask at time of segmentation fault
"11:xor %%rax, %%rax\n"
"test %%rdx, %%rdx\n" // only return old mask, if set is non-NULL
"jz 7b\n"
"mov %%r10, 0(%%rdx)\n" // old_set
"jmp 7b\n"
// Handle rt_sigreturn()
"12:cmp $15, %%rax\n" // NR_rt_sigreturn
"jnz 14f\n"
"mov 0xA8(%%rsp), %%rsp\n" // %rsp at time of segmentation fault
"13:syscall\n" // rt_sigreturn() is unrestricted
"mov $66, %%edi\n" // rt_sigreturn() should never return
"mov $231, %%eax\n" // NR_exit_group
"jmp 13b\n"
// Copy signal frame onto new stack. See clone.cc for details
"14:cmp $56+0xF000, %%rax\n" // NR_clone + 0xF000
"jnz 15f\n"
"lea 8(%%rsp), %%rax\n" // retain stack frame upon returning
"mov %%rax, 0xA8(%%rsp)\n" // %rsp at time of segmentation fault
"jmp 7b\n"
// Forward system call to syscallWrapper()
"15:lea 7b(%%rip), %%rcx\n"
"push %%rcx\n"
"push 0xB8(%%rsp)\n" // %rip at time of segmentation fault
"lea playground$syscallWrapper(%%rip), %%rcx\n"
"jmp *%%rcx\n"
// In order to implement SA_NODEFER, we have to keep track of recursive
// calls to SIGSEGV handlers. This means we have to increment a counter
// before calling the user's signal handler, and decrement it on
// leaving the user's signal handler.
// Some signal handlers look at the return address of the signal
// stack, and more importantly "gdb" uses the call to rt_sigreturn()
// as a magic signature when doing stacktraces. So, we have to use
// a little more unusual code to regain control after the user's
// signal handler is done. We adjust the return address to point to
// non-executable memory. And when we trigger another SEGV we pop the
// extraneous signal frame and then call rt_sigreturn().
// N.B. We currently do not correctly adjust the SEGV counter, if the
// user's signal handler exits in way other than by returning (e.g. by
// directly calling rt_sigreturn(), or by calling siglongjmp()).
"16:lea 22f(%%rip), %%r14\n"
"cmp %%r14, %%r15\n"
"jnz 17f\n" // check if returning from user's handler
"decl %%gs:0x105C-0xE0\n" // decrement SEGV recursion counter
"mov 0xA8(%%rsp), %%rsp\n" // %rsp at time of segmentation fault
"mov $0xF, %%eax\n" // NR_rt_sigreturn
"syscall\n"
// This was a genuine segmentation fault. Check Sandbox::sa_segv_ for
// what we are supposed to do.
"17:mov playground$sa_segv@GOTPCREL(%%rip), %%rax\n"
"cmp $0, 0(%%rax)\n" // SIG_DFL
"jz 18f\n"
"cmp $1, 0(%%rax)\n" // SIG_IGN
"jnz 19f\n" // can't really ignore synchronous signals
// Trigger the kernel's default signal disposition. The only way we can
// do this from seccomp mode is by blocking the signal and retriggering
// it.
"18:orb $4, 0x131(%%rsp)\n" // signal mask at time of segmentation fault
"ret\n"
// Check sa_flags:
// - We can ignore SA_NOCLDSTOP, SA_NOCLDWAIT, and SA_RESTART as they
// do not have any effect for SIGSEGV.
// - On x86-64, we can also ignore SA_SIGINFO, as the calling
// conventions for sa_handler() are a subset of the conventions for
// sa_sigaction().
// - We have to always register our signal handler with SA_NODEFER so
// that the user's signal handler can make system calls which might
// require additional help from our SEGV handler.
// - If the user's signal handler wasn't supposed to be SA_NODEFER, then
// we emulate this behavior by keeping track of a recursion counter.
//
// TODO(markus): If/when we add support for sigaltstack(), we have to
// handle SA_ONSTACK.
"19:cmpl $0, %%gs:0x105C-0xE0\n"// check if we failed inside of SEGV handler
"jnz 18b\n" // if so, then terminate program
"mov 0(%%rax), %%rbx\n" // sa_segv_.sa_sigaction
"mov 8(%%rax), %%rcx\n" // sa_segv_.sa_flags
"btl $31, %%ecx\n" // SA_RESETHAND
"jnc 20f\n"
"movq $0, 0(%%rax)\n" // set handler to SIG_DFL
"20:btl $30, %%ecx\n" // SA_NODEFER
"jc 21f\n"
"mov %%r14, 0(%%rsp)\n" // trigger a SEGV on return, so that we can
"incl %%gs:0x105C-0xE0\n" // clean up state; incr. recursion counter
"21:jmp *%%rbx\n" // call user's signal handler
// Non-executable version of the restorer function. We use this to
// trigger a SEGV upon returning from the user's signal handler, giving
// us an ability to clean up prior to returning from the SEGV handler.
".pushsection .data\n" // move code into non-executable section
"22:mov $0xF, %%rax\n" // gdb looks for this signature when doing
"syscall\n" // backtraces
".popsection\n"
#elif defined(__i386__)
// Inspect instruction at the point where the segmentation fault
// happened. If it is RDTSC, forward the request to the trusted
// thread.
"mov $-3, %%ebx\n" // request for RDTSC
"mov 0xDC(%%esp), %%ebp\n" // %eip at time of segmentation fault
"cmpw $0x310F, (%%ebp)\n" // RDTSC
"jz 0f\n"
"cmpw $0x010F, (%%ebp)\n" // RDTSCP
"jnz 9f\n"
"cmpb $0xF9, 2(%%ebp)\n"
"jnz 9f\n"
"mov $-4, %%ebx\n" // request for RDTSCP
"0:"
#ifndef NDEBUG
"lea 100f, %%eax\n"
"push %%eax\n"
"call playground$debugMessage\n"
"sub $4, %%esp\n"
#else
"sub $8, %%esp\n" // allocate buffer for receiving timestamp
#endif
"push %%ebx\n"
"mov %%fs:16, %%ebx\n" // fd = threadFdPub
"mov %%esp, %%ecx\n" // buf = %esp
"mov $4, %%edx\n" // len = sizeof(int)
"1:mov %%edx, %%eax\n" // NR_write
"int $0x80\n"
"cmp %%eax, %%edx\n"
"jz 7f\n"
"cmp $-4, %%eax\n" // EINTR
"jz 1b\n"
"2:add $12, %%esp\n" // remove temporary buffer from stack
"xor %%eax, %%eax\n"
"movl $0, 0xC8(%%esp)\n" // %edx at time of segmentation fault
"cmpw $0x310F, (%%ebp)\n" // RDTSC
"jz 3f\n"
"movl $0, 0xCC(%%esp)\n" // %ecx at time of segmentation fault
"3:mov %%eax, 0xD0(%%esp)\n" // %eax at time of segmentation fault
"4:mov 0xDC(%%esp), %%ebp\n" // %eip at time of segmentation fault
"addl $2, 0xDC(%%esp)\n" // %eip at time of segmentation fault
"cmpw $0x010F, (%%ebp)\n" // RDTSCP
"jnz 5f\n"
"addl $1, 0xDC(%%esp)\n" // %eip at time of segmentation fault
"5:sub $0x1C8, %%esp\n" // a legacy signal stack is much larger
"mov 0x1CC(%%esp), %%eax\n" // push signal number
"push %%eax\n"
"lea 0x270(%%esp), %%esi\n" // copy siginfo register values
"lea 0x4(%%esp), %%edi\n" // into new location
"mov $22, %%ecx\n"
"cld\n"
"rep movsl\n"
"mov 0x2C8(%%esp), %%ebx\n" // copy first half of signal mask
"mov %%ebx, 0x54(%%esp)\n"
"lea 6f, %%esi\n" // copy "magic" restorer function
"push %%esi\n" // push restorer function
"lea 0x2D4(%%esp), %%edi\n" // patch up retcode magic numbers
"movb $2, %%cl\n"
"rep movsl\n"
"ret\n" // return to restorer function
// The restorer function is sometimes used by gdb as a magic marker to
// recognize signal stack frames. Don't change any of the next three
// instructions.
"6:pop %%eax\n" // remove dummy argument (signo)
"mov $119, %%eax\n" // NR_sigreturn
"int $0x80\n"
"7:mov $12, %%edx\n" // len = 3*sizeof(int)
"8:mov $3, %%eax\n" // NR_read
"int $0x80\n"
"cmp $-4, %%eax\n" // EINTR
"jz 8b\n"
"cmp %%eax, %%edx\n"
"jnz 2b\n"
"pop %%eax\n"
"pop %%edx\n"
"pop %%ecx\n"
"mov %%edx, 0xC8(%%esp)\n" // %edx at time of segmentation fault
"cmpw $0x310F, (%%ebp)\n" // RDTSC
"jz 3b\n"
"mov %%ecx, 0xCC(%%esp)\n" // %ecx at time of segmentation fault
"jmp 3b\n"
// If the instruction is INT 0, then this was probably the result
// of playground::Library being unable to find a way to safely
// rewrite the system call instruction. Retrieve the CPU register
// at the time of the segmentation fault and invoke syscallWrapper().
"9:cmpw $0x00CD, (%%ebp)\n" // INT $0x0
"jnz 20f\n"
#ifndef NDEBUG
"lea 200f, %%eax\n"
"push %%eax\n"
"call playground$debugMessage\n"
"add $0x4, %%esp\n"
#endif
"mov 0xD0(%%esp), %%eax\n" // %eax at time of segmentation fault
"mov 0xC4(%%esp), %%ebx\n" // %ebx at time of segmentation fault
"mov 0xCC(%%esp), %%ecx\n" // %ecx at time of segmentation fault
"mov 0xC8(%%esp), %%edx\n" // %edx at time of segmentation fault
"mov 0xB8(%%esp), %%esi\n" // %esi at time of segmentation fault
"mov 0xB4(%%esp), %%edi\n" // %edi at time of segmentation fault
"mov 0xB2(%%esp), %%ebp\n" // %ebp at time of segmentation fault
// Handle sigprocmask() and rt_sigprocmask()
"cmp $175, %%eax\n" // NR_rt_sigprocmask
"jnz 10f\n"
"mov $-22, %%eax\n" // -EINVAL
"cmp $8, %%esi\n" // %esi = sigsetsize (8 bytes = 64 signals)
"jl 3b\n"
"jmp 11f\n"
"10:cmp $126, %%eax\n" // NR_sigprocmask
"jnz 15f\n"
"mov $-22, %%eax\n"
"11:mov 0xFC(%%esp), %%edi\n" // signal mask at time of segmentation fault
"mov 0x100(%%esp), %%ebp\n"
"test %%ecx, %%ecx\n" // only set mask, if set is non-NULL
"jz 14f\n"
"mov 0(%%ecx), %%esi\n"
"mov 4(%%ecx), %%ecx\n"
"cmp $0, %%ebx\n" // %ebx = how (SIG_BLOCK)
"jnz 12f\n"
"or %%esi, 0xFC(%%esp)\n" // signal mask at time of segmentation fault
"or %%ecx, 0x100(%%esp)\n"
"jmp 14f\n"
"12:cmp $1, %%ebx\n" // %ebx = how (SIG_UNBLOCK)
"jnz 13f\n"
"xor $-1, %%esi\n"
"xor $-1, %%ecx\n"
"and %%esi, 0xFC(%%esp)\n" // signal mask at time of segmentation fault
"and %%ecx, 0x100(%%esp)\n"
"jmp 14f\n"
"13:cmp $2, %%ebx\n" // %ebx = how (SIG_SETMASK)
"jnz 3b\n"
"mov %%esi, 0xFC(%%esp)\n" // signal mask at time of segmentation fault
"mov %%ecx, 0x100(%%esp)\n"
"14:xor %%eax, %%eax\n"
"test %%edx, %%edx\n" // only return old mask, if set is non-NULL
"jz 3b\n"
"mov %%edi, 0(%%edx)\n" // old_set
"mov %%ebp, 4(%%edx)\n"
"jmp 3b\n"
// Handle sigreturn() and rt_sigreturn()
// See syscall.cc for a discussion on how we can emulate rt_sigreturn()
// by calling sigreturn() with a suitably adjusted stack.
"15:cmp $119, %%eax\n" // NR_sigreturn
"jnz 17f\n"
"mov 0xC0(%%esp), %%esp\n" // %esp at time of segmentation fault
"16:int $0x80\n" // sigreturn() is unrestricted
"17:cmp $173, %%eax\n" // NR_rt_sigreturn
"jnz 18f\n"
"mov 0xC0(%%esp), %%esp\n" // %esp at time of segmentation fault
"sub $4, %%esp\n" // add fake return address
"jmp 4b\n"
// Copy signal frame onto new stack. In the process, we have to convert
// it from an RT signal frame to a legacy signal frame.
// See clone.cc for details
"18:cmp $120+0xF000, %%eax\n" // NR_clone + 0xF000
"jnz 19f\n"
"lea -0x1C8(%%esp), %%eax\n"// retain stack frame upon returning
"mov %%eax, 0xC0(%%esp)\n" // %esp at time of segmentation fault
"jmp 3b\n"
// Forward system call to syscallWrapper()
"19:call playground$syscallWrapper\n"
"jmp 3b\n"
// In order to implement SA_NODEFER, we have to keep track of recursive
// calls to SIGSEGV handlers. This means we have to increment a counter
// before calling the user's signal handler, and decrement it on
// leaving the user's signal handler.
// Some signal handlers look at the return address of the signal
// stack, and more importantly "gdb" uses the call to {,rt_}sigreturn()
// as a magic signature when doing stacktraces. So, we have to use
// a little more unusual code to regain control after the user's
// signal handler is done. We adjust the return address to point to
// non-executable memory. And when we trigger another SEGV we pop the
// extraneous signal frame and then call sigreturn().
// N.B. We currently do not correctly adjust the SEGV counter, if the
// user's signal handler exits in way other than by returning (e.g. by
// directly calling {,rt_}sigreturn(), or by calling siglongjmp()).
"20:lea 30f, %%edi\n" // rt-style restorer function
"lea 31f, %%esi\n" // legacy restorer function
"cmp %%ebp, %%edi\n" // check if returning from user's handler
"jnz 21f\n"
"decl %%fs:0x1040-0x58\n" // decrement SEGV recursion counter
"mov 0xC0(%%esp), %%esp\n" // %esp at time of segmentation fault
"jmp 29f\n"
"21:cmp %%ebp, %%esi\n" // check if returning from user's handler
"jnz 22f\n"
"decl %%fs:0x1040-0x58\n" // decrement SEGV recursion counter
"mov 0xC0(%%esp), %%esp\n" // %esp at time of segmentation fault
"jmp 6b\n"
// This was a genuine segmentation fault. Check Sandbox::sa_segv_ for
// what we are supposed to do.
"22:lea playground$sa_segv, %%eax\n"
"cmp $0, 0(%%eax)\n" // SIG_DFL
"jz 23f\n"
"cmp $1, 0(%%eax)\n" // SIG_IGN
"jnz 24f\n" // can't really ignore synchronous signals
// Trigger the kernel's default signal disposition. The only way we can
// do this from seccomp mode is by blocking the signal and retriggering
// it.
"23:orb $4, 0xFD(%%esp)\n" // signal mask at time of segmentation fault
"jmp 5b\n"
// Check sa_flags:
// - We can ignore SA_NOCLDSTOP, SA_NOCLDWAIT, and SA_RESTART as they
// do not have any effect for SIGSEGV.
// - We have to always register our signal handler with SA_NODEFER so
// that the user's signal handler can make system calls which might
// require additional help from our SEGV handler.
// - If the user's signal handler wasn't supposed to be SA_NODEFER, then
// we emulate this behavior by keeping track of a recursion counter.
//
// TODO(markus): If/when we add support for sigaltstack(), we have to
// handle SA_ONSTACK.
"24:cmpl $0, %%fs:0x1040-0x58\n"// check if we failed inside of SEGV handler
"jnz 23b\n" // if so, then terminate program
"mov 0(%%eax), %%ebx\n" // sa_segv_.sa_sigaction
"mov 4(%%eax), %%ecx\n" // sa_segv_.sa_flags
"btl $31, %%ecx\n" // SA_RESETHAND
"jnc 25f\n"
"movl $0, 0(%%eax)\n" // set handler to SIG_DFL
"25:btl $30, %%ecx\n" // SA_NODEFER
"jc 28f\n"
"btl $2, %%ecx\n" // SA_SIGINFO
"jnc 26f\n"
"mov %%edi, 0(%%esp)\n" // trigger a SEGV on return
"incl %%fs:0x1040-0x58\n" // increment recursion counter
"jmp *%%ebx\n" // call user's signal handler
"26:mov %%esi, 0(%%esp)\n"
"incl %%fs:0x1040-0x58\n" // increment recursion counter
// We always register the signal handler to give us rt-style signal
// frames. But if the user asked for legacy signal frames, we must
// convert the signal frame prior to calling the user's signal handler.
"27:sub $0x1C8, %%esp\n" // a legacy signal stack is much larger
"mov 0x1CC(%%esp), %%eax\n" // push signal number
"push %%eax\n"
"mov 0x1CC(%%esp), %%eax\n" // push restorer function
"push %%eax\n"
"lea 0x274(%%esp), %%esi\n" // copy siginfo register values
"lea 0x8(%%esp), %%edi\n" // into new location
"mov $22, %%ecx\n"
"cld\n"
"rep movsl\n"
"mov 0x2CC(%%esp), %%eax\n" // copy first half of signal mask
"mov %%eax, 0x58(%%esp)\n"
"lea 31f, %%esi\n"
"lea 0x2D4(%%esp), %%edi\n" // patch up retcode magic numbers
"movb $2, %%cl\n"
"rep movsl\n"
"jmp *%%ebx\n" // call user's signal handler
"28:lea 6b, %%eax\n" // set appropriate restorer function
"mov %%eax, 0(%%esp)\n"
"btl $2, %%ecx\n" // SA_SIGINFO
"jnc 27b\n"
"lea 29f, %%eax\n"
"mov %%eax, 0(%%esp)\n" // set appropriate restorer function
"jmp *%%ebx\n" // call user's signal handler
"29:pushl $30f\n" // emulate rt_sigreturn()
"jmp 5b\n"
// Non-executable versions of the restorer function. We use these to
// trigger a SEGV upon returning from the user's signal handler, giving
// us an ability to clean up prior to returning from the SEGV handler.
".pushsection .data\n" // move code into non-executable section
"30:mov $173, %%eax\n" // NR_rt_sigreturn
"int $0x80\n" // gdb looks for this signature when doing
".byte 0\n" // backtraces
"31:pop %%eax\n"
"mov $119, %%eax\n" // NR_sigreturn
"int $0x80\n"
".popsection\n"
#else
#error Unsupported target platform
#endif
".pushsection \".rodata\"\n"
#ifndef NDEBUG
"100:.asciz \"RDTSC(P): Executing handler\\n\"\n"
"200:.asciz \"INT $0x0: Executing handler\\n\"\n"
#endif
".popsection\n"
"999:pop %0\n"
: "=g"(fnc)
:
: "memory"
#if defined(__x86_64__)
, "rsp"
#elif defined(__i386__)
, "esp"
#endif
);
return fnc;
}
SecureMem::Args* Sandbox::getSecureMem() {
// Check trusted_thread.cc for the magic offset that gets us from the TLS
// to the beginning of the secure memory area.
SecureMem::Args* ret;
#if defined(__x86_64__)
asm volatile(
"movq %%gs:-0xE0, %0\n"
: "=q"(ret));
#elif defined(__i386__)
asm volatile(
"movl %%fs:-0x58, %0\n"
: "=r"(ret));
#else
#error Unsupported target platform
#endif
return ret;
}
void Sandbox::snapshotMemoryMappings(int processFd, int proc_self_maps) {
SysCalls sys;
if (sys.lseek(proc_self_maps, 0, SEEK_SET) ||
!sendFd(processFd, proc_self_maps, -1, NULL, 0)) {
failure:
die("Cannot access /proc/self/maps");
}
int dummy;
if (read(sys, processFd, &dummy, sizeof(dummy)) != sizeof(dummy)) {
goto failure;
}
}
int Sandbox::supportsSeccompSandbox(int proc_fd) {
if (status_ != STATUS_UNKNOWN) {
return status_ != STATUS_UNSUPPORTED;
}
int fds[2];
SysCalls sys;
if (sys.pipe(fds)) {
status_ = STATUS_UNSUPPORTED;
return 0;
}
pid_t pid;
switch ((pid = sys.fork())) {
case -1:
status_ = STATUS_UNSUPPORTED;
return 0;
case 0: {
int devnull = sys.open("/dev/null", O_RDWR, 0);
if (devnull >= 0) {
sys.dup2(devnull, 0);
sys.dup2(devnull, 1);
sys.dup2(devnull, 2);
sys.close(devnull);
}
if (proc_fd >= 0) {
setProcSelfMaps(sys.openat(proc_fd, "self/maps", O_RDONLY, 0));
}
startSandbox();
write(sys, fds[1], "", 1);
// Try to tell the trusted thread to shut down the entire process in an
// orderly fashion
defaultSystemCallHandler(__NR_exit_group, 0, 0, 0, 0, 0, 0);
// If that did not work (e.g. because the kernel does not know about the
// exit_group() system call), make a direct _exit() system call instead.
// This system call is unrestricted in seccomp mode, so it will always
// succeed. Normally, we don't like it, because unlike exit_group() it
// does not terminate any other thread. But since we know that
// exit_group() exists in all kernels which support kernel-level threads,
// this is OK we only get here for old kernels where _exit() is OK.
sys._exit(0);
}
default:
NOINTR_SYS(sys.close(fds[1]));
char ch;
if (read(sys, fds[0], &ch, 1) != 1) {
status_ = STATUS_UNSUPPORTED;
} else {
status_ = STATUS_AVAILABLE;
}
int rc;
NOINTR_SYS(sys.waitpid(pid, &rc, 0));
NOINTR_SYS(sys.close(fds[0]));
return status_ != STATUS_UNSUPPORTED;
}
}
void Sandbox::setProcSelfMaps(int proc_self_maps) {
proc_self_maps_ = proc_self_maps;
}
void Sandbox::startSandbox() {
if (status_ == STATUS_UNSUPPORTED) {
die("The seccomp sandbox is not supported on this computer");
} else if (status_ == STATUS_ENABLED) {
return;
}
SysCalls sys;
if (proc_self_maps_ < 0) {
proc_self_maps_ = sys.open("/proc/self/maps", O_RDONLY, 0);
if (proc_self_maps_ < 0) {
die("Cannot access \"/proc/self/maps\"");
}
}
// The pid is unchanged for the entire program, so we can retrieve it once
// and store it in a global variable.
pid_ = sys.getpid();
// Block all signals, except for the RDTSC handler
setupSignalHandlers();
// Get socketpairs for talking to the trusted process
int pair[4];
if (sys.socketpair(AF_UNIX, SOCK_STREAM, 0, pair) ||
sys.socketpair(AF_UNIX, SOCK_STREAM, 0, pair+2)) {
die("Failed to create trusted thread");
}
processFdPub_ = pair[0];
cloneFdPub_ = pair[2];
SecureMemArgs* secureMem = createTrustedProcess(pair[0], pair[1],
pair[2], pair[3]);
// We find all libraries that have system calls and redirect the system
// calls to the sandbox. If we miss any system calls, the application will be
// terminated by the kernel's seccomp code. So, from a security point of
// view, if this code fails to identify system calls, we are still behaving
// correctly.
{
Maps maps(proc_self_maps_);
const char *libs[] = { "ld", "libc", "librt", "libpthread", NULL };
// Intercept system calls in the VDSO segment (if any). This has to happen
// before intercepting system calls in any of the other libraries, as
// the main kernel entry point might be inside of the VDSO and we need to
// determine its address before we can compare it to jumps from inside
// other libraries.
for (Maps::const_iterator iter = maps.begin(); iter != maps.end(); ++iter){
Library* library = *iter;
if (library->isVDSO() && library->parseElf()) {
library->makeWritable(true);
library->patchSystemCalls();
library->makeWritable(false);
break;
}
}
// Intercept system calls in libraries that are known to have them.
for (Maps::const_iterator iter = maps.begin(); iter != maps.end(); ++iter){
Library* library = *iter;
const char* mapping = iter.name().c_str();
// Find the actual base name of the mapped library by skipping past any
// SPC and forward-slashes. We don't want to accidentally find matches,
// because the directory name included part of our well-known lib names.
//
// Typically, prior to pruning, entries would look something like this:
// 08:01 2289011 /lib/libc-2.7.so
for (const char *delim = " /"; *delim; ++delim) {
const char* skip = strrchr(mapping, *delim);
if (skip) {
mapping = skip + 1;
}
}
for (const char **ptr = libs; *ptr; ptr++) {
const char *name = strstr(mapping, *ptr);
if (name == mapping) {
char ch = name[strlen(*ptr)];
if (ch < 'A' || (ch > 'Z' && ch < 'a') || ch > 'z') {
if (library->parseElf()) {
library->makeWritable(true);
library->patchSystemCalls();
library->makeWritable(false);
break;
}
}
}
}
}
}
// Take a snapshot of the current memory mappings. These mappings will be
// off-limits to all future mmap(), munmap(), mremap(), and mprotect() calls.
snapshotMemoryMappings(processFdPub_, proc_self_maps_);
NOINTR_SYS(sys.close(proc_self_maps_));
proc_self_maps_ = -1;
// Creating the trusted thread enables sandboxing
createTrustedThread(processFdPub_, cloneFdPub_, secureMem);
// We can no longer check for sandboxing support at this point, but we also
// know for a fact that it is available (as we just turned it on). So update
// the status to reflect this information.
status_ = STATUS_ENABLED;
}
} // namespace
|