1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
|
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "library.h"
#include "sandbox_impl.h"
#include "syscall_table.h"
namespace playground {
// Global variables
int Sandbox::proc_self_maps_ = -1;
enum Sandbox::SandboxStatus Sandbox::status_ = STATUS_UNKNOWN;
int Sandbox::pid_;
int Sandbox::processFdPub_;
int Sandbox::cloneFdPub_;
Sandbox::ProtectedMap Sandbox::protectedMap_;
std::vector<SecureMem::Args*> Sandbox::secureMemPool_;
bool Sandbox::sendFd(int transport, int fd0, int fd1, const void* buf,
size_t len) {
int fds[2], count = 0;
if (fd0 >= 0) { fds[count++] = fd0; }
if (fd1 >= 0) { fds[count++] = fd1; }
if (!count) {
return false;
}
char cmsg_buf[CMSG_SPACE(count*sizeof(int))];
memset(cmsg_buf, 0, sizeof(cmsg_buf));
struct SysCalls::kernel_iovec iov[2] = { { 0 } };
struct SysCalls::kernel_msghdr msg = { 0 };
int dummy = 0;
iov[0].iov_base = &dummy;
iov[0].iov_len = sizeof(dummy);
if (buf && len > 0) {
iov[1].iov_base = const_cast<void *>(buf);
iov[1].iov_len = len;
}
msg.msg_iov = iov;
msg.msg_iovlen = (buf && len > 0) ? 2 : 1;
msg.msg_control = cmsg_buf;
msg.msg_controllen = CMSG_LEN(count*sizeof(int));
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
cmsg->cmsg_len = CMSG_LEN(count*sizeof(int));
memcpy(CMSG_DATA(cmsg), fds, count*sizeof(int));
SysCalls sys;
return NOINTR_SYS(sys.sendmsg(transport, &msg, 0)) ==
(ssize_t)(sizeof(dummy) + ((buf && len > 0) ? len : 0));
}
bool Sandbox::getFd(int transport, int* fd0, int* fd1, void* buf, size_t*len) {
int count = 0;
int *err = NULL;
if (fd0) {
count++;
err = fd0;
*fd0 = -1;
}
if (fd1) {
if (!count++) {
err = fd1;
}
*fd1 = -1;
}
if (!count) {
return false;
}
char cmsg_buf[CMSG_SPACE(count*sizeof(int))];
memset(cmsg_buf, 0, sizeof(cmsg_buf));
struct SysCalls::kernel_iovec iov[2] = { { 0 } };
struct SysCalls::kernel_msghdr msg = { 0 };
iov[0].iov_base = err;
iov[0].iov_len = sizeof(int);
if (buf && len && *len > 0) {
iov[1].iov_base = buf;
iov[1].iov_len = *len;
}
msg.msg_iov = iov;
msg.msg_iovlen = (buf && len && *len > 0) ? 2 : 1;
msg.msg_control = cmsg_buf;
msg.msg_controllen = CMSG_LEN(count*sizeof(int));
SysCalls sys;
ssize_t bytes = NOINTR_SYS(sys.recvmsg(transport, &msg, 0));
if (len) {
*len = bytes > (int)sizeof(int) ?
bytes - sizeof(int) : 0;
}
if (bytes != (ssize_t)(sizeof(int) + ((buf && len && *len > 0) ? *len : 0))){
*err = bytes >= 0 ? 0 : -EBADF;
return false;
}
if (*err) {
// "err" is the first four bytes of the payload. If these are non-zero,
// the sender on the other side of the socketpair sent us an errno value.
// We don't expect to get any file handles in this case.
return false;
}
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
if ((msg.msg_flags & (MSG_TRUNC|MSG_CTRUNC)) ||
!cmsg ||
cmsg->cmsg_level != SOL_SOCKET ||
cmsg->cmsg_type != SCM_RIGHTS ||
cmsg->cmsg_len != CMSG_LEN(count*sizeof(int))) {
*err = -EBADF;
return false;
}
if (fd1) { *fd1 = ((int *)CMSG_DATA(cmsg))[--count]; }
if (fd0) { *fd0 = ((int *)CMSG_DATA(cmsg))[--count]; }
return true;
}
void Sandbox::setupSignalHandlers() {
// Set SIGCHLD to SIG_DFL so that waitpid() can work
SysCalls sys;
struct SysCalls::kernel_sigaction sa;
memset(&sa, 0, sizeof(sa));
sa.sa_handler_ = SIG_DFL;
sys.sigaction(SIGCHLD, &sa, NULL);
// Set up SEGV handler for dealing with RDTSC instructions, system calls
// that have been rewritten to use INT0, and for sigpending() emulation.
sa.sa_handler_ = segv();
sys.sigaction(SIGSEGV, &sa, NULL);
// Unblock SIGSEGV and SIGCHLD
SysCalls::kernel_sigset_t mask;
memset(&mask, 0x00, sizeof(mask));
mask.sig[0] |= (1 << (SIGSEGV - 1)) | (1 << (SIGCHLD - 1));
sys.sigprocmask(SIG_UNBLOCK, &mask, 0);
}
void (*Sandbox::segv())(int signo) {
void (*fnc)(int signo);
asm volatile(
"call 999f\n"
#if defined(__x86_64__)
// Inspect instruction at the point where the segmentation fault
// happened. If it is RDTSC, forward the request to the trusted
// thread.
"mov $-3, %%r14\n" // request for RDTSC
"mov 0xB0(%%rsp), %%r15\n" // %rip at time of segmentation fault
"cmpw $0x310F, (%%r15)\n" // RDTSC
"jz 0f\n"
"cmpw $0x010F, (%%r15)\n" // RDTSCP
"jnz 8f\n"
"cmpb $0xF9, 2(%%r15)\n"
"jnz 8f\n"
"mov $-4, %%r14\n" // request for RDTSCP
"0:"
#ifndef NDEBUG
"lea 100f(%%rip), %%rdi\n"
"call playground$debugMessage\n"
#endif
"sub $4, %%rsp\n"
"push %%r14\n"
"mov %%gs:16, %%edi\n" // fd = threadFdPub
"mov %%rsp, %%rsi\n" // buf = %rsp
"mov $4, %%edx\n" // len = sizeof(int)
"1:mov $1, %%eax\n" // NR_write
"syscall\n"
"cmp %%rax, %%rdx\n"
"jz 5f\n"
"cmp $-4, %%eax\n" // EINTR
"jz 1b\n"
"2:add $12, %%rsp\n"
"movq $0, 0x98(%%rsp)\n" // %rax at time of segmentation fault
"movq $0, 0x90(%%rsp)\n" // %rdx at time of segmentation fault
"cmpw $0x310F, (%%r15)\n" // RDTSC
"jz 3f\n"
"movq $0, 0xA0(%%rsp)\n" // %rcx at time of segmentation fault
"3:addq $2, 0xB0(%%rsp)\n" // %rip at time of segmentation fault
"cmpw $0x010F, (%%r15)\n" // RDTSC
"jnz 4f\n"
"addq $1, 0xB0(%%rsp)\n" // %rip at time of segmentation fault
"4:ret\n"
"5:mov $12, %%edx\n" // len = 3*sizeof(int)
"6:mov $0, %%eax\n" // NR_read
"syscall\n"
"cmp $-4, %%eax\n" // EINTR
"jz 6b\n"
"cmp %%rax, %%rdx\n"
"jnz 2b\n"
"mov 0(%%rsp), %%eax\n"
"mov 4(%%rsp), %%edx\n"
"mov 8(%%rsp), %%ecx\n"
"add $12, %%rsp\n"
"mov %%rdx, 0x90(%%rsp)\n" // %rdx at time of segmentation fault
"cmpw $0x310F, (%%r15)\n" // RDTSC
"jz 7f\n"
"mov %%rcx, 0xA0(%%rsp)\n" // %rcx at time of segmentation fault
"7:mov %%rax, 0x98(%%rsp)\n" // %rax at time of segmentation fault
"jmp 3b\n"
// If the instruction is INT 0, then this was probably the result
// of playground::Library being unable to find a way to safely
// rewrite the system call instruction. Retrieve the CPU register
// at the time of the segmentation fault and invoke syscallWrapper().
"8:cmpw $0x00CD, (%%r15)\n" // INT $0x0
"jnz 14f\n"
#ifndef NDEBUG
"lea 200f(%%rip), %%rdi\n"
"call playground$debugMessage\n"
#endif
"mov 0x98(%%rsp), %%rax\n" // %rax at time of segmentation fault
"mov 0x70(%%rsp), %%rdi\n" // %rdi at time of segmentation fault
"mov 0x78(%%rsp), %%rsi\n" // %rsi at time of segmentation fault
"mov 0x90(%%rsp), %%rdx\n" // %rdx at time of segmentation fault
"mov 0x40(%%rsp), %%r10\n" // %r10 at time of segmentation fault
"mov 0x30(%%rsp), %%r8\n" // %r8 at time of segmentation fault
"mov 0x38(%%rsp), %%r9\n" // %r9 at time of segmentation fault
// Handle rt_sigprocmask()
"cmp $14, %%rax\n" // NR_rt_sigprocmask
"jnz 12f\n"
"mov $-22, %%rax\n" // -EINVAL
"cmp $8, %%r10\n" // %r10 = sigsetsize (8 bytes = 64 signals)
"jl 7b\n"
"mov 0x130(%%rsp), %%r10\n" // signal mask at time of segmentation fault
"test %%rsi, %%rsi\n" // only set mask, if set is non-NULL
"jz 11f\n"
"mov 0(%%rsi), %%rsi\n"
"cmp $0, %%rdi\n" // %rdi = how (SIG_BLOCK)
"jnz 9f\n"
"or %%rsi, 0x130(%%rsp)\n" // signal mask at time of segmentation fault
"jmp 11f\n"
"9:cmp $1, %%rdi\n" // %rdi = how (SIG_UNBLOCK)
"jnz 10f\n"
"xor $-1, %%rsi\n"
"and %%rsi, 0x130(%%rsp)\n" // signal mask at time of segmentation fault
"jmp 11f\n"
"10:cmp $2, %%rdi\n" // %rdi = how (SIG_SETMASK)
"jnz 7b\n"
"mov %%rsi, 0x130(%%rsp)\n" // signal mask at time of segmentation fault
"11:xor %%rax, %%rax\n"
"test %%rdx, %%rdx\n" // only return old mask, if set is non-NULL
"jz 7b\n"
"mov %%r10, 0(%%rdx)\n" // old_set
"jmp 7b\n"
// Copy signal frame onto new stack. See clone.cc for details
"12:cmp $56+0xF000, %%rax\n" // NR_clone + 0xF000
"jnz 13f\n"
"mov 0xA8(%%rsp), %%rcx\n" // %rsp at time of segmentation fault
"sub %%rsp, %%rcx\n" // %rcx = size of stack frame
"sub $8, %%rcx\n" // skip return address
"mov %%rcx, %%rax\n" // return size of signal stack frame
"mov 0(%%rdx), %%rdi\n" // stack for newly clone()'d thread
"sub %%rcx, %%rdi\n" // copy onto new stack
"mov %%rdi, 0(%%rdx)\n" // allocate space on new stack
"lea 8(%%rsp), %%rsi\n" // copy from current stack
"cld\n"
"rep movsb\n"
"jmp 7b\n"
// Forward system call to syscallWrapper()
"13:lea 7b(%%rip), %%rcx\n"
"push %%rcx\n"
"push 0xB8(%%rsp)\n" // %rip at time of segmentation fault
"lea playground$syscallWrapper(%%rip), %%rcx\n"
"jmp *%%rcx\n"
// This was a genuine segmentation fault. Trigger the kernel's default
// signal disposition. The only way we can do this from seccomp mode
// is by blocking the signal and retriggering it.
"14:mov $2, %%edi\n" // stderr
"lea 300f(%%rip), %%rsi\n" // "Segmentation fault\n"
"mov $301f-300f, %%edx\n"
"mov $1, %%eax\n" // NR_write
"syscall\n"
"orb $4, 0x131(%%rsp)\n" // signal mask at time of segmentation fault
"ret\n"
#elif defined(__i386__)
// Inspect instruction at the point where the segmentation fault
// happened. If it is RDTSC, forward the request to the trusted
// thread.
"mov $-3, %%ebx\n" // request for RDTSC
"mov 0x40(%%esp), %%ebp\n" // %eip at time of segmentation fault
"cmpw $0x310F, (%%ebp)\n" // RDTSC
"jz 0f\n"
"cmpw $0x010F, (%%ebp)\n"
"jnz 8f\n"
"cmpb $0xF9, 2(%%ebp)\n"
"jnz 8f\n"
"mov $-4, %%ebx\n" // request for RDTSCP
"0:"
#ifndef NDEBUG
"lea 100f, %%eax\n"
"push %%eax\n"
"call playground$debugMessage\n"
"sub $4, %%esp\n"
#else
"sub $8, %%esp\n"
#endif
"push %%ebx\n"
"mov %%fs:16, %%ebx\n" // fd = threadFdPub
"mov %%esp, %%ecx\n" // buf = %esp
"mov $4, %%edx\n" // len = sizeof(int)
"1:mov %%edx, %%eax\n" // NR_write
"int $0x80\n"
"cmp %%eax, %%edx\n"
"jz 5f\n"
"cmp $-4, %%eax\n" // EINTR
"jz 1b\n"
"2:add $12, %%esp\n"
"movl $0, 0x34(%%esp)\n" // %eax at time of segmentation fault
"movl $0, 0x2C(%%esp)\n" // %edx at time of segmentation fault
"cmpw $0x310F, (%%ebp)\n" // RDTSC
"jz 3f\n"
"movl $0, 0x30(%%esp)\n" // %ecx at time of segmentation fault
"3:addl $2, 0x40(%%esp)\n" // %eip at time of segmentation fault
"mov 0x40(%%esp), %%ebp\n" // %eip at time of segmentation fault
"cmpw $0x010F, (%%ebp)\n" // RDTSC
"jnz 4f\n"
"addl $1, 0x40(%%esp)\n" // %eip at time of segmentation fault
"4:ret\n"
"5:mov $12, %%edx\n" // len = 3*sizeof(int)
"6:mov $3, %%eax\n" // NR_read
"int $0x80\n"
"cmp $-4, %%eax\n" // EINTR
"jz 6b\n"
"cmp %%eax, %%edx\n"
"jnz 2b\n"
"pop %%eax\n"
"pop %%edx\n"
"pop %%ecx\n"
"mov %%edx, 0x2C(%%esp)\n" // %edx at time of segmentation fault
"cmpw $0x310F, (%%ebp)\n" // RDTSC
"jz 7f\n"
"mov %%ecx, 0x30(%%esp)\n" // %ecx at time of segmentation fault
"7:mov %%eax, 0x34(%%esp)\n" // %eax at time of segmentation fault
"jmp 3b\n"
// If the instruction is INT 0, then this was probably the result
// of playground::Library being unable to find a way to safely
// rewrite the system call instruction. Retrieve the CPU register
// at the time of the segmentation fault and invoke syscallWrapper().
"8:cmpw $0x00CD, (%%ebp)\n" // INT $0x0
"jnz 16f\n"
#ifndef NDEBUG
"lea 200f, %%eax\n"
"push %%eax\n"
"call playground$debugMessage\n"
"add $0x4, %%esp\n"
#endif
"mov 0x34(%%esp), %%eax\n" // %eax at time of segmentation fault
"mov 0x28(%%esp), %%ebx\n" // %ebx at time of segmentation fault
"mov 0x30(%%esp), %%ecx\n" // %ecx at time of segmentation fault
"mov 0x2C(%%esp), %%edx\n" // %edx at time of segmentation fault
"mov 0x1C(%%esp), %%esi\n" // %esi at time of segmentation fault
"mov 0x18(%%esp), %%edi\n" // %edi at time of segmentation fault
"mov 0x20(%%esp), %%ebp\n" // %ebp at time of segmentation fault
// Handle sigprocmask() and rt_sigprocmask()
"cmp $175, %%eax\n" // NR_rt_sigprocmask
"jnz 9f\n"
"mov $-22, %%eax\n" // -EINVAL
"cmp $8, %%esi\n" // %esi = sigsetsize (8 bytes = 64 signals)
"jl 7b\n"
"jmp 10f\n"
"9:cmp $126, %%eax\n" // NR_sigprocmask
"jnz 14f\n"
"mov $-22, %%eax\n"
"10:mov 0x58(%%esp), %%edi\n" // signal mask at time of segmentation fault
"mov 0x5C(%%esp), %%ebp\n"
"test %%ecx, %%ecx\n" // only set mask, if set is non-NULL
"jz 13f\n"
"mov 0(%%ecx), %%esi\n"
"mov 4(%%ecx), %%ecx\n"
"cmp $0, %%ebx\n" // %ebx = how (SIG_BLOCK)
"jnz 11f\n"
"or %%esi, 0x58(%%esp)\n" // signal mask at time of segmentation fault
"or %%ecx, 0x5C(%%esp)\n"
"jmp 13f\n"
"11:cmp $1, %%ebx\n" // %ebx = how (SIG_UNBLOCK)
"jnz 12f\n"
"xor $-1, %%esi\n"
"xor $-1, %%ecx\n"
"and %%esi, 0x58(%%esp)\n" // signal mask at time of segmentation fault
"and %%ecx, 0x5C(%%esp)\n"
"jmp 13f\n"
"12:cmp $2, %%ebx\n" // %ebx = how (SIG_SETMASK)
"jnz 7b\n"
"mov %%esi, 0x58(%%esp)\n" // signal mask at time of segmentation fault
"mov %%ecx, 0x5C(%%esp)\n"
"13:xor %%eax, %%eax\n"
"test %%edx, %%edx\n" // only return old mask, if set is non-NULL
"jz 7b\n"
"mov %%edi, 0(%%edx)\n" // old_set
"mov %%ebp, 4(%%edx)\n"
"jmp 7b\n"
// Copy signal frame onto new stack. See clone.cc for details
"14:cmp $120+0xF000, %%eax\n" // NR_clone + 0xF000
"jnz 15f\n"
"mov 0x24(%%esp), %%ecx\n" // %esp at time of segmentation fault
"sub %%esp, %%ecx\n" // %ecx = size of stack frame
"sub $8, %%ecx\n" // skip return address and dummy
"mov %%ecx, %%eax\n" // return size of signal stack frame
"mov 0(%%edx), %%edi\n" // stack for newly clone()'d thread
"sub %%ecx, %%edi\n" // copy onto new stack
"mov %%edi, 0(%%edx)\n" // allocate space on new stack
"lea 8(%%esp), %%esi\n" // copy from current stack
"cld\n"
"rep movsb\n"
"jmp 7b\n"
// Forward system call to syscallWrapper()
"15:call playground$syscallWrapper\n"
"jmp 7b\n"
// This was a genuine segmentation fault. Trigger the kernel's default
// signal disposition. The only way we can do this from seccomp mode
// is by blocking the signal and retriggering it.
"16:mov $2, %%ebx\n" // stderr
"lea 300f, %%ecx\n" // "Segmentation fault\n"
"mov $301f-300f, %%edx\n"
"mov $4, %%eax\n" // NR_write
"int $0x80\n"
"orb $4, 0x59(%%esp)\n" // signal mask at time of segmentation fault
"ret\n"
#else
#error Unsupported target platform
#endif
".pushsection \".rodata\"\n"
#ifndef NDEBUG
"100:.asciz \"RDTSC(P): Executing handler\\n\"\n"
"200:.asciz \"INT $0x0: Executing handler\\n\"\n"
#endif
"300:.ascii \"Segmentation fault\\n\"\n"
"301:\n"
".popsection\n"
"999:pop %0\n"
: "=g"(fnc)
:
: "memory"
#if defined(__x86_64__)
, "rsp"
#elif defined(__i386__)
, "esp"
#endif
);
return fnc;
}
SecureMem::Args* Sandbox::getSecureMem() {
// Check trusted_thread.cc for the magic offset that gets us from the TLS
// to the beginning of the secure memory area.
SecureMem::Args* ret;
#if defined(__x86_64__)
asm volatile(
"movq %%gs:-0xE0, %0\n"
: "=q"(ret));
#elif defined(__i386__)
asm volatile(
"movl %%fs:-0x58, %0\n"
: "=r"(ret));
#else
#error Unsupported target platform
#endif
return ret;
}
void Sandbox::snapshotMemoryMappings(int processFd, int proc_self_maps) {
SysCalls sys;
if (sys.lseek(proc_self_maps, 0, SEEK_SET) ||
!sendFd(processFd, proc_self_maps, -1, NULL, 0)) {
failure:
die("Cannot access /proc/self/maps");
}
int dummy;
if (read(sys, processFd, &dummy, sizeof(dummy)) != sizeof(dummy)) {
goto failure;
}
}
int Sandbox::supportsSeccompSandbox(int proc_fd) {
if (status_ != STATUS_UNKNOWN) {
return status_ != STATUS_UNSUPPORTED;
}
int fds[2];
SysCalls sys;
if (sys.pipe(fds)) {
status_ = STATUS_UNSUPPORTED;
return 0;
}
pid_t pid;
switch ((pid = sys.fork())) {
case -1:
status_ = STATUS_UNSUPPORTED;
return 0;
case 0: {
int devnull = sys.open("/dev/null", O_RDWR, 0);
if (devnull >= 0) {
sys.dup2(devnull, 0);
sys.dup2(devnull, 1);
sys.dup2(devnull, 2);
sys.close(devnull);
}
if (proc_fd >= 0) {
setProcSelfMaps(sys.openat(proc_fd, "self/maps", O_RDONLY, 0));
}
startSandbox();
write(sys, fds[1], "", 1);
// Try to tell the trusted thread to shut down the entire process in an
// orderly fashion
defaultSystemCallHandler(__NR_exit_group, 0, 0, 0, 0, 0, 0);
// If that did not work (e.g. because the kernel does not know about the
// exit_group() system call), make a direct _exit() system call instead.
// This system call is unrestricted in seccomp mode, so it will always
// succeed. Normally, we don't like it, because unlike exit_group() it
// does not terminate any other thread. But since we know that
// exit_group() exists in all kernels which support kernel-level threads,
// this is OK we only get here for old kernels where _exit() is OK.
sys._exit(0);
}
default:
NOINTR_SYS(sys.close(fds[1]));
char ch;
if (read(sys, fds[0], &ch, 1) != 1) {
status_ = STATUS_UNSUPPORTED;
} else {
status_ = STATUS_AVAILABLE;
}
int rc;
NOINTR_SYS(sys.waitpid(pid, &rc, 0));
NOINTR_SYS(sys.close(fds[0]));
return status_ != STATUS_UNSUPPORTED;
}
}
void Sandbox::setProcSelfMaps(int proc_self_maps) {
proc_self_maps_ = proc_self_maps;
}
void Sandbox::startSandbox() {
if (status_ == STATUS_UNSUPPORTED) {
die("The seccomp sandbox is not supported on this computer");
} else if (status_ == STATUS_ENABLED) {
return;
}
SysCalls sys;
if (proc_self_maps_ < 0) {
proc_self_maps_ = sys.open("/proc/self/maps", O_RDONLY, 0);
if (proc_self_maps_ < 0) {
die("Cannot access \"/proc/self/maps\"");
}
}
// The pid is unchanged for the entire program, so we can retrieve it once
// and store it in a global variable.
pid_ = sys.getpid();
// Block all signals, except for the RDTSC handler
setupSignalHandlers();
// Get socketpairs for talking to the trusted process
int pair[4];
if (sys.socketpair(AF_UNIX, SOCK_STREAM, 0, pair) ||
sys.socketpair(AF_UNIX, SOCK_STREAM, 0, pair+2)) {
die("Failed to create trusted thread");
}
processFdPub_ = pair[0];
cloneFdPub_ = pair[2];
SecureMemArgs* secureMem = createTrustedProcess(pair[0], pair[1],
pair[2], pair[3]);
// We find all libraries that have system calls and redirect the system
// calls to the sandbox. If we miss any system calls, the application will be
// terminated by the kernel's seccomp code. So, from a security point of
// view, if this code fails to identify system calls, we are still behaving
// correctly.
{
Maps maps(proc_self_maps_);
const char *libs[] = { "ld", "libc", "librt", "libpthread", NULL };
// Intercept system calls in the VDSO segment (if any). This has to happen
// before intercepting system calls in any of the other libraries, as
// the main kernel entry point might be inside of the VDSO and we need to
// determine its address before we can compare it to jumps from inside
// other libraries.
for (Maps::const_iterator iter = maps.begin(); iter != maps.end(); ++iter){
Library* library = *iter;
if (library->isVDSO() && library->parseElf()) {
library->makeWritable(true);
library->patchSystemCalls();
library->makeWritable(false);
break;
}
}
// Intercept system calls in libraries that are known to have them.
for (Maps::const_iterator iter = maps.begin(); iter != maps.end(); ++iter){
Library* library = *iter;
const char* mapping = iter.name().c_str();
// Find the actual base name of the mapped library by skipping past any
// SPC and forward-slashes. We don't want to accidentally find matches,
// because the directory name included part of our well-known lib names.
//
// Typically, prior to pruning, entries would look something like this:
// 08:01 2289011 /lib/libc-2.7.so
for (const char *delim = " /"; *delim; ++delim) {
const char* skip = strrchr(mapping, *delim);
if (skip) {
mapping = skip + 1;
}
}
for (const char **ptr = libs; *ptr; ptr++) {
const char *name = strstr(mapping, *ptr);
if (name == mapping) {
char ch = name[strlen(*ptr)];
if (ch < 'A' || (ch > 'Z' && ch < 'a') || ch > 'z') {
if (library->parseElf()) {
library->makeWritable(true);
library->patchSystemCalls();
library->makeWritable(false);
break;
}
}
}
}
}
}
// Take a snapshot of the current memory mappings. These mappings will be
// off-limits to all future mmap(), munmap(), mremap(), and mprotect() calls.
snapshotMemoryMappings(processFdPub_, proc_self_maps_);
NOINTR_SYS(sys.close(proc_self_maps_));
proc_self_maps_ = -1;
// Creating the trusted thread enables sandboxing
createTrustedThread(processFdPub_, cloneFdPub_, secureMem);
// We can no longer check for sandboxing support at this point, but we also
// know for a fact that it is available (as we just turned it on). So update
// the status to reflect this information.
status_ = STATUS_ENABLED;
}
} // namespace
|