1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
|
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "sandbox/linux/services/syscall_wrappers.h"
#include <pthread.h>
#include <sched.h>
#include <setjmp.h>
#include <sys/resource.h>
#include <sys/syscall.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <cstring>
#include "base/compiler_specific.h"
#include "base/logging.h"
#include "base/third_party/valgrind/valgrind.h"
#include "build/build_config.h"
#include "sandbox/linux/system_headers/capability.h"
#include "sandbox/linux/system_headers/linux_signal.h"
#include "sandbox/linux/system_headers/linux_syscalls.h"
namespace sandbox {
pid_t sys_getpid(void) {
return syscall(__NR_getpid);
}
pid_t sys_gettid(void) {
return syscall(__NR_gettid);
}
long sys_clone(unsigned long flags,
decltype(nullptr) child_stack,
pid_t* ptid,
pid_t* ctid,
decltype(nullptr) tls) {
const bool clone_tls_used = flags & CLONE_SETTLS;
const bool invalid_ctid =
(flags & (CLONE_CHILD_SETTID | CLONE_CHILD_CLEARTID)) && !ctid;
const bool invalid_ptid = (flags & CLONE_PARENT_SETTID) && !ptid;
// We do not support CLONE_VM.
const bool clone_vm_used = flags & CLONE_VM;
if (clone_tls_used || invalid_ctid || invalid_ptid || clone_vm_used) {
RAW_LOG(FATAL, "Invalid usage of sys_clone");
}
if (ptid) MSAN_UNPOISON(ptid, sizeof(*ptid));
if (ctid) MSAN_UNPOISON(ctid, sizeof(*ctid));
// See kernel/fork.c in Linux. There is different ordering of sys_clone
// parameters depending on CONFIG_CLONE_BACKWARDS* configuration options.
#if defined(ARCH_CPU_X86_64)
return syscall(__NR_clone, flags, child_stack, ptid, ctid, tls);
#elif defined(ARCH_CPU_X86) || defined(ARCH_CPU_ARM_FAMILY) || \
defined(ARCH_CPU_MIPS_FAMILY) || defined(ARCH_CPU_MIPS64_FAMILY)
// CONFIG_CLONE_BACKWARDS defined.
return syscall(__NR_clone, flags, child_stack, ptid, tls, ctid);
#endif
}
long sys_clone(unsigned long flags) {
return sys_clone(flags, nullptr, nullptr, nullptr, nullptr);
}
void sys_exit_group(int status) {
syscall(__NR_exit_group, status);
}
int sys_seccomp(unsigned int operation,
unsigned int flags,
const struct sock_fprog* args) {
return syscall(__NR_seccomp, operation, flags, args);
}
int sys_prlimit64(pid_t pid,
int resource,
const struct rlimit64* new_limit,
struct rlimit64* old_limit) {
int res = syscall(__NR_prlimit64, pid, resource, new_limit, old_limit);
if (res == 0 && old_limit) MSAN_UNPOISON(old_limit, sizeof(*old_limit));
return res;
}
int sys_capget(cap_hdr* hdrp, cap_data* datap) {
int res = syscall(__NR_capget, hdrp, datap);
if (res == 0) {
if (hdrp) MSAN_UNPOISON(hdrp, sizeof(*hdrp));
if (datap) MSAN_UNPOISON(datap, sizeof(*datap));
}
return res;
}
int sys_capset(cap_hdr* hdrp, const cap_data* datap) {
return syscall(__NR_capset, hdrp, datap);
}
int sys_getresuid(uid_t* ruid, uid_t* euid, uid_t* suid) {
int res;
#if defined(ARCH_CPU_X86) || defined(ARCH_CPU_ARMEL)
// On 32-bit x86 or 32-bit arm, getresuid supports 16bit values only.
// Use getresuid32 instead.
res = syscall(__NR_getresuid32, ruid, euid, suid);
#else
res = syscall(__NR_getresuid, ruid, euid, suid);
#endif
if (res == 0) {
if (ruid) MSAN_UNPOISON(ruid, sizeof(*ruid));
if (euid) MSAN_UNPOISON(euid, sizeof(*euid));
if (suid) MSAN_UNPOISON(suid, sizeof(*suid));
}
return res;
}
int sys_getresgid(gid_t* rgid, gid_t* egid, gid_t* sgid) {
int res;
#if defined(ARCH_CPU_X86) || defined(ARCH_CPU_ARMEL)
// On 32-bit x86 or 32-bit arm, getresgid supports 16bit values only.
// Use getresgid32 instead.
res = syscall(__NR_getresgid32, rgid, egid, sgid);
#else
res = syscall(__NR_getresgid, rgid, egid, sgid);
#endif
if (res == 0) {
if (rgid) MSAN_UNPOISON(rgid, sizeof(*rgid));
if (egid) MSAN_UNPOISON(egid, sizeof(*egid));
if (sgid) MSAN_UNPOISON(sgid, sizeof(*sgid));
}
return res;
}
int sys_chroot(const char* path) {
return syscall(__NR_chroot, path);
}
int sys_unshare(int flags) {
return syscall(__NR_unshare, flags);
}
int sys_sigprocmask(int how, const sigset_t* set, decltype(nullptr) oldset) {
// In some toolchain (in particular Android and PNaCl toolchain),
// sigset_t is 32 bits, but Linux ABI requires 64 bits.
uint64_t linux_value = 0;
std::memcpy(&linux_value, set, std::min(sizeof(sigset_t), sizeof(uint64_t)));
return syscall(__NR_rt_sigprocmask, how, &linux_value, nullptr,
sizeof(linux_value));
}
#if defined(MEMORY_SANITIZER) || \
(defined(ARCH_CPU_X86_64) && defined(__GNUC__) && !defined(__clang__))
// If MEMORY_SANITIZER is enabled, it is necessary to call sigaction() here,
// rather than the direct syscall (sys_sigaction() defined by ourselves).
// It is because, if MEMORY_SANITIZER is enabled, sigaction is wrapped, and
// |act->sa_handler| is injected in order to unpoisonize the memory passed via
// callback's arguments. Please see msan_interceptors.cc for more details.
// So, if the direct syscall is used, as MEMORY_SANITIZER does not know about
// it, sigaction() invocation in other places would be broken (in more precise,
// returned |oldact| would have a broken |sa_handler| callback).
// Practically, it would break NaCl's signal handler installation.
// cf) native_client/src/trusted/service_runtime/linux/nacl_signal.c.
//
// Also on x86_64 architecture, we need naked function for rt_sigreturn.
// However, there is no simple way to define it with GCC. Note that the body
// of function is actually very small (only two instructions), but we need to
// define much debug information in addition, otherwise backtrace() used by
// base::StackTrace would not work so that some tests would fail.
int sys_sigaction(int signum,
const struct sigaction* act,
struct sigaction* oldact) {
return sigaction(signum, act, oldact);
}
#else
// struct sigaction is different ABI from the Linux's.
struct KernelSigAction {
void (*kernel_handler)(int);
uint32_t sa_flags;
void (*sa_restorer)(void);
uint64_t sa_mask;
};
// On X86_64 arch, it is necessary to set sa_restorer always.
#if defined(ARCH_CPU_X86_64)
#if !defined(SA_RESTORER)
#define SA_RESTORER 0x04000000
#endif
// rt_sigreturn is a special system call that interacts with the user land
// stack. Thus, here prologue must not be created, which implies syscall()
// does not work properly, too. Note that rt_sigreturn will never return.
static __attribute__((naked)) void sys_rt_sigreturn() {
// Just invoke rt_sigreturn system call.
asm volatile ("syscall\n"
:: "a"(__NR_rt_sigreturn));
}
#endif
int sys_sigaction(int signum,
const struct sigaction* act,
struct sigaction* oldact) {
KernelSigAction kernel_act = {};
if (act) {
kernel_act.kernel_handler = act->sa_handler;
std::memcpy(&kernel_act.sa_mask, &act->sa_mask,
std::min(sizeof(kernel_act.sa_mask), sizeof(act->sa_mask)));
kernel_act.sa_flags = act->sa_flags;
#if defined(ARCH_CPU_X86_64)
if (!(kernel_act.sa_flags & SA_RESTORER)) {
kernel_act.sa_flags |= SA_RESTORER;
kernel_act.sa_restorer = sys_rt_sigreturn;
}
#endif
}
KernelSigAction kernel_oldact = {};
int result = syscall(__NR_rt_sigaction, signum, act ? &kernel_act : nullptr,
oldact ? &kernel_oldact : nullptr, sizeof(uint64_t));
if (result == 0 && oldact) {
oldact->sa_handler = kernel_oldact.kernel_handler;
sigemptyset(&oldact->sa_mask);
std::memcpy(&oldact->sa_mask, &kernel_oldact.sa_mask,
std::min(sizeof(kernel_act.sa_mask), sizeof(act->sa_mask)));
oldact->sa_flags = kernel_oldact.sa_flags;
}
return result;
}
#endif // defined(MEMORY_SANITIZER)
} // namespace sandbox
|