1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
|
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <sched.h>
#include <stdio.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/syscall.h>
#include <sys/wait.h>
#include <unistd.h>
#include <vector>
#include "base/files/scoped_file.h"
#include "base/logging.h"
#include "base/memory/scoped_vector.h"
#include "base/posix/eintr_wrapper.h"
#include "base/posix/unix_domain_socket_linux.h"
#include "base/process/process.h"
#include "sandbox/linux/services/syscall_wrappers.h"
#include "sandbox/linux/tests/unit_tests.h"
// Additional tests for base's UnixDomainSocket to make sure it behaves
// correctly in the presence of sandboxing functionality (e.g., receiving
// PIDs across namespaces).
namespace sandbox {
namespace {
const char kHello[] = "hello";
// If the calling process isn't root, then try using unshare(CLONE_NEWUSER)
// to fake it.
void FakeRoot() {
// If we're already root, then allow test to proceed.
if (geteuid() == 0)
return;
// Otherwise hope the kernel supports unprivileged namespaces.
if (unshare(CLONE_NEWUSER) == 0)
return;
printf("Permission to use CLONE_NEWPID missing; skipping test.\n");
UnitTests::IgnoreThisTest();
}
void WaitForExit(pid_t pid) {
int status;
CHECK_EQ(pid, HANDLE_EINTR(waitpid(pid, &status, 0)));
CHECK(WIFEXITED(status));
CHECK_EQ(0, WEXITSTATUS(status));
}
base::ProcessId GetParentProcessId(base::ProcessId pid) {
// base::GetParentProcessId() is defined as taking a ProcessHandle instead of
// a ProcessId, even though it's a POSIX-only function and IDs and Handles
// are both simply pid_t on POSIX... :/
base::Process process = base::Process::Open(pid);
CHECK(process.IsValid());
base::ProcessId ret = base::GetParentProcessId(process.Handle());
return ret;
}
// SendHello sends a "hello" to socket fd, and then blocks until the recipient
// acknowledges it by calling RecvHello.
void SendHello(int fd) {
int pipe_fds[2];
CHECK_EQ(0, pipe(pipe_fds));
base::ScopedFD read_pipe(pipe_fds[0]);
base::ScopedFD write_pipe(pipe_fds[1]);
std::vector<int> send_fds;
send_fds.push_back(write_pipe.get());
CHECK(UnixDomainSocket::SendMsg(fd, kHello, sizeof(kHello), send_fds));
write_pipe.reset();
// Block until receiver closes their end of the pipe.
char ch;
CHECK_EQ(0, HANDLE_EINTR(read(read_pipe.get(), &ch, 1)));
}
// RecvHello receives and acknowledges a "hello" on socket fd, and returns the
// process ID of the sender in sender_pid. Optionally, write_pipe can be used
// to return a file descriptor, and the acknowledgement will be delayed until
// the descriptor is closed.
// (Implementation details: SendHello allocates a new pipe, sends us the writing
// end alongside the "hello" message, and then blocks until we close the writing
// end of the pipe.)
void RecvHello(int fd,
base::ProcessId* sender_pid,
base::ScopedFD* write_pipe = NULL) {
// Extra receiving buffer space to make sure we really received only
// sizeof(kHello) bytes and it wasn't just truncated to fit the buffer.
char buf[sizeof(kHello) + 1];
ScopedVector<base::ScopedFD> message_fds;
ssize_t n = UnixDomainSocket::RecvMsgWithPid(
fd, buf, sizeof(buf), &message_fds, sender_pid);
CHECK_EQ(sizeof(kHello), static_cast<size_t>(n));
CHECK_EQ(0, memcmp(buf, kHello, sizeof(kHello)));
CHECK_EQ(1U, message_fds.size());
if (write_pipe)
write_pipe->swap(*message_fds[0]);
}
// Check that receiving PIDs works across a fork().
SANDBOX_TEST(UnixDomainSocketTest, Fork) {
int fds[2];
CHECK_EQ(0, socketpair(AF_UNIX, SOCK_SEQPACKET, 0, fds));
base::ScopedFD recv_sock(fds[0]);
base::ScopedFD send_sock(fds[1]);
CHECK(UnixDomainSocket::EnableReceiveProcessId(recv_sock.get()));
const pid_t pid = fork();
CHECK_NE(-1, pid);
if (pid == 0) {
// Child process.
recv_sock.reset();
SendHello(send_sock.get());
_exit(0);
}
// Parent process.
send_sock.reset();
base::ProcessId sender_pid;
RecvHello(recv_sock.get(), &sender_pid);
CHECK_EQ(pid, sender_pid);
WaitForExit(pid);
}
// Similar to Fork above, but forking the child into a new pid namespace.
SANDBOX_TEST(UnixDomainSocketTest, Namespace) {
FakeRoot();
int fds[2];
CHECK_EQ(0, socketpair(AF_UNIX, SOCK_SEQPACKET, 0, fds));
base::ScopedFD recv_sock(fds[0]);
base::ScopedFD send_sock(fds[1]);
CHECK(UnixDomainSocket::EnableReceiveProcessId(recv_sock.get()));
const pid_t pid = sys_clone(CLONE_NEWPID | SIGCHLD, 0, 0, 0, 0);
CHECK_NE(-1, pid);
if (pid == 0) {
// Child process.
recv_sock.reset();
// Check that we think we're pid 1 in our new namespace.
CHECK_EQ(1, sys_getpid());
SendHello(send_sock.get());
_exit(0);
}
// Parent process.
send_sock.reset();
base::ProcessId sender_pid;
RecvHello(recv_sock.get(), &sender_pid);
CHECK_EQ(pid, sender_pid);
WaitForExit(pid);
}
// Again similar to Fork, but now with nested PID namespaces.
SANDBOX_TEST(UnixDomainSocketTest, DoubleNamespace) {
FakeRoot();
int fds[2];
CHECK_EQ(0, socketpair(AF_UNIX, SOCK_SEQPACKET, 0, fds));
base::ScopedFD recv_sock(fds[0]);
base::ScopedFD send_sock(fds[1]);
CHECK(UnixDomainSocket::EnableReceiveProcessId(recv_sock.get()));
const pid_t pid = sys_clone(CLONE_NEWPID | SIGCHLD, 0, 0, 0, 0);
CHECK_NE(-1, pid);
if (pid == 0) {
// Child process.
recv_sock.reset();
const pid_t pid2 = sys_clone(CLONE_NEWPID | SIGCHLD, 0, 0, 0, 0);
CHECK_NE(-1, pid2);
if (pid2 != 0) {
// Wait for grandchild to run to completion; see comments below.
WaitForExit(pid2);
// Fallthrough once grandchild has sent its hello and exited.
}
// Check that we think we're pid 1.
CHECK_EQ(1, sys_getpid());
SendHello(send_sock.get());
_exit(0);
}
// Parent process.
send_sock.reset();
// We have two messages to receive: first from the grand-child,
// then from the child.
for (unsigned iteration = 0; iteration < 2; ++iteration) {
base::ProcessId sender_pid;
base::ScopedFD pipe_fd;
RecvHello(recv_sock.get(), &sender_pid, &pipe_fd);
// We need our child and grandchild processes to both be alive for
// GetParentProcessId() to return a valid pid, hence the pipe trickery.
// (On the first iteration, grandchild is blocked reading from the pipe
// until we close it, and child is blocked waiting for grandchild to exit.)
switch (iteration) {
case 0: // Grandchild's message
// Check that sender_pid refers to our grandchild by checking that pid
// (our child) is its parent.
CHECK_EQ(pid, GetParentProcessId(sender_pid));
break;
case 1: // Child's message
CHECK_EQ(pid, sender_pid);
break;
default:
NOTREACHED();
}
}
WaitForExit(pid);
}
// Tests that GetPeerPid() returns 0 if the peer does not exist in caller's
// namespace.
SANDBOX_TEST(UnixDomainSocketTest, ImpossiblePid) {
FakeRoot();
int fds[2];
CHECK_EQ(0, socketpair(AF_UNIX, SOCK_SEQPACKET, 0, fds));
base::ScopedFD send_sock(fds[0]);
base::ScopedFD recv_sock(fds[1]);
CHECK(UnixDomainSocket::EnableReceiveProcessId(recv_sock.get()));
const pid_t pid = sys_clone(CLONE_NEWPID | SIGCHLD, 0, 0, 0, 0);
CHECK_NE(-1, pid);
if (pid == 0) {
// Child process.
send_sock.reset();
base::ProcessId sender_pid;
RecvHello(recv_sock.get(), &sender_pid);
CHECK_EQ(0, sender_pid);
_exit(0);
}
// Parent process.
recv_sock.reset();
SendHello(send_sock.get());
WaitForExit(pid);
}
} // namespace
} // namespace sandbox
|