1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
|
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// http://code.google.com/p/chromium/wiki/LinuxSUIDSandbox
#define _GNU_SOURCE
#include <asm/unistd.h>
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <sched.h>
#include <signal.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/prctl.h>
#include <sys/resource.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/vfs.h>
#include <unistd.h>
#include "linux_util.h"
#include "process_util.h"
#include "suid_unsafe_environment_variables.h"
#if !defined(CLONE_NEWPID)
#define CLONE_NEWPID 0x20000000
#endif
#if !defined(CLONE_NEWNET)
#define CLONE_NEWNET 0x40000000
#endif
#if !defined(BTRFS_SUPER_MAGIC)
#define BTRFS_SUPER_MAGIC 0x9123683E
#endif
#if !defined(EXT2_SUPER_MAGIC)
#define EXT2_SUPER_MAGIC 0xEF53
#endif
#if !defined(EXT3_SUPER_MAGIC)
#define EXT3_SUPER_MAGIC 0xEF53
#endif
#if !defined(EXT4_SUPER_MAGIC)
#define EXT4_SUPER_MAGIC 0xEF53
#endif
#if !defined(REISERFS_SUPER_MAGIC)
#define REISERFS_SUPER_MAGIC 0x52654973
#endif
#if !defined(TMPFS_MAGIC)
#define TMPFS_MAGIC 0x01021994
#endif
#if !defined(XFS_SUPER_MAGIC)
#define XFS_SUPER_MAGIC 0x58465342
#endif
static const char kSandboxDescriptorEnvironmentVarName[] = "SBX_D";
// These are the magic byte values which the sandboxed process uses to request
// that it be chrooted.
static const char kMsgChrootMe = 'C';
static const char kMsgChrootSuccessful = 'O';
static void FatalError(const char *msg, ...)
__attribute__((noreturn, format(printf, 1, 2)));
static void FatalError(const char *msg, ...) {
va_list ap;
va_start(ap, msg);
vfprintf(stderr, msg, ap);
fprintf(stderr, ": %s\n", strerror(errno));
fflush(stderr);
exit(1);
}
static int CloneChrootHelperProcess() {
int sv[2];
if (socketpair(AF_UNIX, SOCK_STREAM, 0, sv) == -1) {
perror("socketpair");
return -1;
}
// Some people mount /tmp on a non-POSIX filesystem (e.g. NFS). This
// breaks all sorts of assumption in our code. So, if we don't recognize the
// filesystem, we will try to use an alternative location for our temp
// directory.
char tempDirectoryTemplate[80] = "/tmp/chrome-sandbox-chroot-XXXXXX";
struct statfs sfs;
if (!statfs("/tmp", &sfs) &&
(unsigned long)sfs.f_type != BTRFS_SUPER_MAGIC &&
(unsigned long)sfs.f_type != EXT2_SUPER_MAGIC &&
(unsigned long)sfs.f_type != EXT3_SUPER_MAGIC &&
(unsigned long)sfs.f_type != EXT4_SUPER_MAGIC &&
(unsigned long)sfs.f_type != REISERFS_SUPER_MAGIC &&
(unsigned long)sfs.f_type != TMPFS_MAGIC &&
(unsigned long)sfs.f_type != XFS_SUPER_MAGIC) {
// If /dev/shm exists, it is supposed to be a tmpfs filesystem. While we
// are not actually using it for shared memory, moving our temp directory
// into a known tmpfs filesystem is preferable over using a potentially
// unreliable non-POSIX filesystem.
if (!statfs("/dev/shm", &sfs) && sfs.f_type == TMPFS_MAGIC) {
*tempDirectoryTemplate = '\000';
strncat(tempDirectoryTemplate, "/dev/shm/chrome-sandbox-chroot-XXXXXX",
sizeof(tempDirectoryTemplate) - 1);
} else {
// Neither /tmp is a well-known POSIX filesystem, nor /dev/shm is a
// tmpfs. After all, we now use /tmp as the location of our temp
// directory, but we quite likely fail the moment we try to access it
// through chroot_dir_fd. If so, we will print a verbose error message
// (see below)
}
}
// We create a temp directory for our chroot. Nobody should ever write into
// it, so it's root:root mode 000.
const char* temp_dir = mkdtemp(tempDirectoryTemplate);
if (!temp_dir) {
perror("Failed to create temp directory for chroot");
return -1;
}
const int chroot_dir_fd = open(temp_dir, O_DIRECTORY | O_RDONLY);
if (chroot_dir_fd < 0) {
rmdir(temp_dir);
perror("Failed to open chroot temp directory");
return -1;
}
if (rmdir(temp_dir)) {
perror("rmdir");
return -1;
}
char proc_self_fd_str[128];
int printed = snprintf(proc_self_fd_str, sizeof(proc_self_fd_str),
"/proc/self/fd/%d", chroot_dir_fd);
if (printed < 0 || printed >= (int)sizeof(proc_self_fd_str)) {
fprintf(stderr, "Error in snprintf");
return -1;
}
if (fchown(chroot_dir_fd, 0 /* root */, 0 /* root */)) {
fprintf(stderr, "Could not set up sandbox work directory. Maybe, /tmp is "
"a non-POSIX filesystem and /dev/shm doesn't exist "
"either. Consider mounting a \"tmpfs\" on /tmp.\n");
return -1;
}
if (fchmod(chroot_dir_fd, 0000 /* no-access */)) {
perror("fchmod");
return -1;
}
const pid_t pid = syscall(
__NR_clone, CLONE_FS | SIGCHLD, 0, 0, 0);
if (pid == -1) {
perror("clone");
close(sv[0]);
close(sv[1]);
return -1;
}
if (pid == 0) {
// We share our files structure with an untrusted process. As a security in
// depth measure, we make sure that we can't open anything by mistake.
// TODO(agl): drop CAP_SYS_RESOURCE / use SECURE_NOROOT
const struct rlimit nofile = {0, 0};
if (setrlimit(RLIMIT_NOFILE, &nofile))
FatalError("Setting RLIMIT_NOFILE");
if (close(sv[1]))
FatalError("close");
// wait for message
char msg;
ssize_t bytes;
do {
bytes = read(sv[0], &msg, 1);
} while (bytes == -1 && errno == EINTR);
if (bytes == 0)
_exit(0);
if (bytes != 1)
FatalError("read");
// do chrooting
if (msg != kMsgChrootMe)
FatalError("Unknown message from sandboxed process");
if (fchdir(chroot_dir_fd))
FatalError("Cannot chdir into chroot temp directory");
struct stat st;
if (fstat(chroot_dir_fd, &st))
FatalError("stat");
if (st.st_uid || st.st_gid || st.st_mode & 0777)
FatalError("Bad permissions on chroot temp directory");
if (chroot(proc_self_fd_str))
FatalError("Cannot chroot into temp directory");
if (chdir("/"))
FatalError("Cannot chdir to / after chroot");
const char reply = kMsgChrootSuccessful;
do {
bytes = write(sv[0], &reply, 1);
} while (bytes == -1 && errno == EINTR);
if (bytes != 1)
FatalError("Writing reply");
_exit(0);
}
if (close(chroot_dir_fd)) {
close(sv[0]);
close(sv[1]);
perror("close(chroot_dir_fd)");
return false;
}
if (close(sv[0])) {
close(sv[1]);
perror("close");
return false;
}
return sv[1];
}
static bool SpawnChrootHelper() {
const int chroot_signal_fd = CloneChrootHelperProcess();
if (chroot_signal_fd == -1)
return false;
// In the parent process, we install an environment variable containing the
// number of the file descriptor.
char desc_str[64];
int printed = snprintf(desc_str, sizeof(desc_str), "%d", chroot_signal_fd);
if (printed < 0 || printed >= (int)sizeof(desc_str)) {
fprintf(stderr, "Failed to snprintf\n");
return false;
}
if (setenv(kSandboxDescriptorEnvironmentVarName, desc_str, 1)) {
perror("setenv");
close(chroot_signal_fd);
return false;
}
return true;
}
static bool MoveToNewNamespaces() {
// These are the sets of flags which we'll try, in order.
const int kCloneExtraFlags[] = {
CLONE_NEWPID | CLONE_NEWNET,
CLONE_NEWPID,
};
for (size_t i = 0;
i < sizeof(kCloneExtraFlags) / sizeof(kCloneExtraFlags[0]);
i++) {
pid_t pid = syscall(__NR_clone, SIGCHLD | kCloneExtraFlags[i], 0, 0, 0);
if (pid > 0)
_exit(0);
if (pid == 0) {
if (kCloneExtraFlags[i] & CLONE_NEWPID) {
setenv("SBX_PID_NS", "", 1 /* overwrite */);
} else {
unsetenv("SBX_PID_NS");
}
if (kCloneExtraFlags[i] & CLONE_NEWNET) {
setenv("SBX_NET_NS", "", 1 /* overwrite */);
} else {
unsetenv("SBX_NET_NS");
}
break;
}
if (errno != EINVAL) {
perror("Failed to move to new PID namespace");
return false;
}
}
// If the system doesn't support NEWPID then we carry on anyway.
return true;
}
static bool DropRoot() {
if (prctl(PR_SET_DUMPABLE, 0, 0, 0, 0)) {
perror("prctl(PR_SET_DUMPABLE)");
return false;
}
if (prctl(PR_GET_DUMPABLE, 0, 0, 0, 0)) {
perror("Still dumpable after prctl(PR_SET_DUMPABLE)");
return false;
}
gid_t rgid, egid, sgid;
if (getresgid(&rgid, &egid, &sgid)) {
perror("getresgid");
return false;
}
if (setresgid(rgid, rgid, rgid)) {
perror("setresgid");
return false;
}
uid_t ruid, euid, suid;
if (getresuid(&ruid, &euid, &suid)) {
perror("getresuid");
return false;
}
if (setresuid(ruid, ruid, ruid)) {
perror("setresuid");
return false;
}
return true;
}
static bool SetupChildEnvironment() {
unsigned i;
// ld.so may have cleared several environment variables because we are SUID.
// However, the child process might need them so zygote_host_linux.cc saves a
// copy in SANDBOX_$x. This is safe because we have dropped root by this
// point, so we can only exec a binary with the permissions of the user who
// ran us in the first place.
for (i = 0; kSUIDUnsafeEnvironmentVariables[i]; ++i) {
const char* const envvar = kSUIDUnsafeEnvironmentVariables[i];
char* const saved_envvar = SandboxSavedEnvironmentVariable(envvar);
if (!saved_envvar)
return false;
const char* const value = getenv(saved_envvar);
if (value) {
setenv(envvar, value, 1 /* overwrite */);
unsetenv(saved_envvar);
}
free(saved_envvar);
}
return true;
}
int main(int argc, char **argv) {
if (argc <= 1) {
fprintf(stderr, "Usage: %s <renderer process> <args...>\n", argv[0]);
return 1;
}
// In the SUID sandbox, if we succeed in calling MoveToNewNamespaces()
// below, then the zygote and all the renderers are in an alternate PID
// namespace and do not know their real PIDs. As such, they report the wrong
// PIDs to the task manager.
//
// To fix this, when the zygote spawns a new renderer, it gives the renderer
// a dummy socket, which has a unique inode number. Then it asks the sandbox
// host to find the PID of the process holding that fd by searching /proc.
//
// Since the zygote and renderers are all spawned by this setuid executable,
// their entries in /proc are owned by root and only readable by root. In
// order to search /proc for the fd we want, this setuid executable has to
// double as a helper and perform the search. The code block below does this
// when you call it with --find-inode INODE_NUMBER.
if (argc == 3 && (0 == strcmp(argv[1], kFindInodeSwitch))) {
pid_t pid;
char* endptr;
ino_t inode = strtoull(argv[2], &endptr, 10);
if (inode == ULLONG_MAX || *endptr)
return 1;
if (!FindProcessHoldingSocket(&pid, inode))
return 1;
printf("%d\n", pid);
return 0;
}
// Likewise, we cannot adjust /proc/pid/oom_adj for sandboxed renderers
// because those files are owned by root. So we need another helper here.
if (argc == 4 && (0 == strcmp(argv[1], kAdjustOOMScoreSwitch))) {
char* endptr;
long score;
unsigned long pid_ul = strtoul(argv[2], &endptr, 10);
if (pid_ul == ULONG_MAX || *endptr)
return 1;
pid_t pid = pid_ul;
score = strtol(argv[3], &endptr, 10);
if (score == LONG_MAX || score == LONG_MIN || *endptr)
return 1;
return AdjustOOMScore(pid, score);
}
if (!MoveToNewNamespaces())
return 1;
if (!SpawnChrootHelper())
return 1;
if (!DropRoot())
return 1;
if (!SetupChildEnvironment())
return 1;
execv(argv[1], &argv[1]);
FatalError("execv failed");
return 1;
}
|