summaryrefslogtreecommitdiffstats
path: root/sandbox/linux/tests/unit_tests.cc
blob: 9973b7521cb0df4d57128c66ee67c53736cea58b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <fcntl.h>
#include <signal.h>
#include <stdio.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <unistd.h>

#include "base/file_util.h"
#include "base/third_party/valgrind/valgrind.h"
#include "sandbox/linux/tests/unit_tests.h"

namespace {
  std::string TestFailedMessage(const std::string& msg) {
    return msg.empty() ? "" : "Actual test failure: " + msg;
  }
}

namespace sandbox {

static const int kExpectedValue = 42;
static const int kIgnoreThisTest = 43;
static const int kExitWithAssertionFailure = 1;
static const int kExitForTimeout = 2;

static void SigAlrmHandler(int) {
    const char failure_message[] = "Timeout reached!\n";
    // Make sure that we never block here.
    if (!fcntl(2, F_SETFL,  O_NONBLOCK)) {
      if (write(2, failure_message, sizeof(failure_message) - 1) < 0) {
      }
    }
    _exit(kExitForTimeout);
}

// Set a timeout with a handler that will automatically fail the
// test.
static void SetProcessTimeout(int time_in_seconds) {
  struct sigaction act = {};
  act.sa_handler = SigAlrmHandler;
  SANDBOX_ASSERT(sigemptyset(&act.sa_mask) == 0);
  act.sa_flags = 0;

  struct sigaction old_act;
  SANDBOX_ASSERT(sigaction(SIGALRM, &act, &old_act) == 0);

  // We don't implemenet signal chaining, so make sure that nothing else
  // is expecting to handle SIGALRM.
  SANDBOX_ASSERT((old_act.sa_flags & SA_SIGINFO) == 0);
  SANDBOX_ASSERT(old_act.sa_handler == SIG_DFL);
  sigset_t sigalrm_set;
  SANDBOX_ASSERT(sigemptyset(&sigalrm_set) == 0);
  SANDBOX_ASSERT(sigaddset(&sigalrm_set, SIGALRM) == 0);
  SANDBOX_ASSERT(sigprocmask(SIG_UNBLOCK, &sigalrm_set, NULL) == 0);
  SANDBOX_ASSERT(alarm(time_in_seconds) == 0);  // There should be no previous
                                                // alarm.
}

void UnitTests::RunTestInProcess(UnitTests::Test test, void *arg,
                                 DeathCheck death, const void *death_aux) {
  // Runs a test in a sub-process. This is necessary for most of the code
  // in the BPF sandbox, as it potentially makes global state changes and as
  // it also tends to raise fatal errors, if the code has been used in an
  // insecure manner.
  int fds[2];
  ASSERT_EQ(0, pipe(fds));

  pid_t pid;
  ASSERT_LE(0, (pid = fork()));
  if (!pid) {
    // In child process
    // Redirect stderr to our pipe. This way, we can capture all error
    // messages, if we decide we want to do so in our tests.
    SANDBOX_ASSERT(dup2(fds[1], 2) == 2);
    SANDBOX_ASSERT(!close(fds[0]));
    SANDBOX_ASSERT(!close(fds[1]));

    // Don't set a timeout if running on Valgrind, since it's generally much
    // slower.
    if (!RUNNING_ON_VALGRIND) {
      SetProcessTimeout(10 /* seconds */);
    }

    // Disable core files. They are not very useful for our individual test
    // cases.
    struct rlimit no_core = { 0 };
    setrlimit(RLIMIT_CORE, &no_core);

    test(arg);
    _exit(kExpectedValue);
  }

  (void)HANDLE_EINTR(close(fds[1]));
  std::vector<char> msg_buf;
  ssize_t rc;
  do {
    const unsigned int kCapacity = 256;
    size_t len = msg_buf.size();
    msg_buf.resize(len + kCapacity);
    rc = HANDLE_EINTR(read(fds[0], &msg_buf[len], kCapacity));
    msg_buf.resize(len + std::max(rc, static_cast<ssize_t>(0)));
  } while (rc > 0);
  (void)HANDLE_EINTR(close(fds[0]));
  std::string msg(msg_buf.begin(), msg_buf.end());

  int status = 0;
  int waitpid_returned = HANDLE_EINTR(waitpid(pid, &status, 0));
  ASSERT_EQ(pid, waitpid_returned) << TestFailedMessage(msg);

  // At run-time, we sometimes decide that a test shouldn't actually
  // run (e.g. when testing sandbox features on a kernel that doesn't
  // have sandboxing support). When that happens, don't attempt to
  // call the "death" function, as it might be looking for a
  // death-test condition that would never have triggered.
  if (!WIFEXITED(status) || WEXITSTATUS(status) != kIgnoreThisTest ||
      !msg.empty()) {
    // We use gtest's ASSERT_XXX() macros instead of the DeathCheck
    // functions.  This means, on failure, "return" is called. This
    // only works correctly, if the call of the "death" callback is
    // the very last thing in our function.
    death(status, msg, death_aux);
  }
}

void UnitTests::DeathSuccess(int status, const std::string& msg,
                             const void *) {
  std::string details(TestFailedMessage(msg));

  bool subprocess_terminated_normally = WIFEXITED(status);
  ASSERT_TRUE(subprocess_terminated_normally) << details;
  int subprocess_exit_status = WEXITSTATUS(status);
  ASSERT_EQ(kExpectedValue, subprocess_exit_status) << details;
  bool subprocess_exited_but_printed_messages = !msg.empty();
  EXPECT_FALSE(subprocess_exited_but_printed_messages) << details;
}

void UnitTests::DeathMessage(int status, const std::string& msg,
                             const void *aux) {
  std::string details(TestFailedMessage(msg));
  const char *expected_msg = static_cast<const char *>(aux);

  bool subprocess_terminated_normally = WIFEXITED(status);
  ASSERT_TRUE(subprocess_terminated_normally) << details;
  int subprocess_exit_status = WEXITSTATUS(status);
  ASSERT_EQ(kExitWithAssertionFailure, subprocess_exit_status) << details;
  bool subprocess_exited_without_matching_message =
    msg.find(expected_msg) == std::string::npos;
  EXPECT_FALSE(subprocess_exited_without_matching_message) << details;
}

void UnitTests::DeathExitCode(int status, const std::string& msg,
                              const void *aux) {
  int expected_exit_code = static_cast<int>(reinterpret_cast<intptr_t>(aux));
  std::string details(TestFailedMessage(msg));

  bool subprocess_terminated_normally = WIFEXITED(status);
  ASSERT_TRUE(subprocess_terminated_normally) << details;
  int subprocess_exit_status = WEXITSTATUS(status);
  ASSERT_EQ(subprocess_exit_status, expected_exit_code) << details;
}

void UnitTests::DeathBySignal(int status, const std::string& msg,
                              const void *aux) {
  int expected_signo = static_cast<int>(reinterpret_cast<intptr_t>(aux));
  std::string details(TestFailedMessage(msg));

  bool subprocess_terminated_by_signal = WIFSIGNALED(status);
  ASSERT_TRUE(subprocess_terminated_by_signal) << details;
  int subprocess_signal_number = WTERMSIG(status);
  ASSERT_EQ(subprocess_signal_number, expected_signo) << details;
}

void UnitTests::AssertionFailure(const char *expr, const char *file,
                                 int line) {
  fprintf(stderr, "%s:%d:%s", file, line, expr);
  fflush(stderr);
  _exit(kExitWithAssertionFailure);
}

void UnitTests::IgnoreThisTest() {
  fflush(stderr);
  _exit(kIgnoreThisTest);
}

}  // namespace