summaryrefslogtreecommitdiffstats
path: root/sandbox/src/ipc_unittest.cc
blob: 5bf3c5491c56b84c8890bc01c7e182bab6f7fc92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
// Copyright (c) 2006-2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/basictypes.h"
#include "sandbox/src/crosscall_client.h"
#include "sandbox/src/crosscall_server.h"
#include "sandbox/src/sharedmem_ipc_client.h"
#include "sandbox/src/sharedmem_ipc_server.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace sandbox {

// Helper function to make the fake shared memory with some
// basic elements initialized.
IPCControl* MakeChannels(size_t channel_size, size_t total_shared_size,
                         size_t* base_start) {
  // Allocate memory
  char* mem = new char[total_shared_size];
  memset(mem, 0, total_shared_size);
  // Calculate how many channels we can fit in the shared memory.
  total_shared_size -= offsetof(IPCControl, channels);
  size_t channel_count =
    total_shared_size / (sizeof(ChannelControl) + channel_size);
  // Calculate the start of the first channel.
  *base_start = (sizeof(ChannelControl)* channel_count) +
    offsetof(IPCControl, channels);
  // Setup client structure.
  IPCControl* client_control = reinterpret_cast<IPCControl*>(mem);
  client_control->channels_count = channel_count;
  return client_control;
}

enum TestFixMode {
  FIX_NO_EVENTS,
  FIX_PONG_READY,
  FIX_PONG_NOT_READY
};

void FixChannels(IPCControl* client_control, size_t base_start,
                 size_t channel_size, TestFixMode mode) {
  for (size_t ix = 0; ix != client_control->channels_count; ++ix) {
    ChannelControl& channel = client_control->channels[ix];
    channel.channel_base = base_start;
    channel.state = kFreeChannel;
    if (mode != FIX_NO_EVENTS) {
      BOOL signaled = (FIX_PONG_READY == mode)? TRUE : FALSE;
      channel.ping_event = ::CreateEventW(NULL, FALSE, FALSE, NULL);
      channel.pong_event = ::CreateEventW(NULL, FALSE, signaled, NULL);
    }
    base_start += channel_size;
  }
}

void CloseChannelEvents(IPCControl* client_control) {
  for (size_t ix = 0; ix != client_control->channels_count; ++ix) {
    ChannelControl& channel = client_control->channels[ix];
    ::CloseHandle(channel.ping_event);
    ::CloseHandle(channel.pong_event);
  }
}

TEST(IPCTest, ChannelMaker) {
  // Test that our testing rig is computing offsets properly. We should have
  // 5 channnels and the offset to the first channel is 108 bytes in 32 bits
  // and 216 in 64 bits.
  size_t channel_start = 0;
  IPCControl* client_control = MakeChannels(12 * 64, 4096, &channel_start);
  ASSERT_TRUE(NULL != client_control);
  EXPECT_EQ(5, client_control->channels_count);
#if defined(_WIN64)
  EXPECT_EQ(216, channel_start);
#else
  EXPECT_EQ(108, channel_start);
#endif
  delete[] reinterpret_cast<char*>(client_control);
}

TEST(IPCTest, ClientLockUnlock) {
  // Make 7 channels of kIPCChannelSize (1kb) each. Test that we lock and
  // unlock channels properly.
  size_t base_start = 0;
  IPCControl* client_control =
      MakeChannels(kIPCChannelSize, 4096 * 2, &base_start);
  FixChannels(client_control, base_start, kIPCChannelSize, FIX_NO_EVENTS);

  char* mem = reinterpret_cast<char*>(client_control);
  SharedMemIPCClient client(mem);

  // Test that we lock the first 3 channels in sequence.
  void* buff0 = client.GetBuffer();
  EXPECT_TRUE(mem + client_control->channels[0].channel_base == buff0);
  EXPECT_EQ(kBusyChannel, client_control->channels[0].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[1].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[2].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[3].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[4].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[5].state);

  void* buff1 = client.GetBuffer();
  EXPECT_TRUE(mem + client_control->channels[1].channel_base == buff1);
  EXPECT_EQ(kBusyChannel, client_control->channels[0].state);
  EXPECT_EQ(kBusyChannel, client_control->channels[1].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[2].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[3].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[4].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[5].state);

  void* buff2 = client.GetBuffer();
  EXPECT_TRUE(mem + client_control->channels[2].channel_base == buff2);
  EXPECT_EQ(kBusyChannel, client_control->channels[0].state);
  EXPECT_EQ(kBusyChannel, client_control->channels[1].state);
  EXPECT_EQ(kBusyChannel, client_control->channels[2].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[3].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[4].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[5].state);

  // Test that we unlock and re-lock the right channel.
  client.FreeBuffer(buff1);
  EXPECT_EQ(kBusyChannel, client_control->channels[0].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[1].state);
  EXPECT_EQ(kBusyChannel, client_control->channels[2].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[3].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[4].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[5].state);

  void* buff2b = client.GetBuffer();
  EXPECT_TRUE(mem + client_control->channels[1].channel_base == buff2b);
  EXPECT_EQ(kBusyChannel, client_control->channels[0].state);
  EXPECT_EQ(kBusyChannel, client_control->channels[1].state);
  EXPECT_EQ(kBusyChannel, client_control->channels[2].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[3].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[4].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[5].state);

  client.FreeBuffer(buff0);
  EXPECT_EQ(kFreeChannel, client_control->channels[0].state);
  EXPECT_EQ(kBusyChannel, client_control->channels[1].state);
  EXPECT_EQ(kBusyChannel, client_control->channels[2].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[3].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[4].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[5].state);

  delete[] reinterpret_cast<char*>(client_control);
}

TEST(IPCTest, CrossCallStrPacking) {
  // This test tries the CrossCall object with null and non-null string
  // combination of parameters, integer types and verifies that the unpacker
  // can read them properly.
  size_t base_start = 0;
  IPCControl* client_control =
      MakeChannels(kIPCChannelSize, 4096 * 4, &base_start);
  client_control->server_alive = HANDLE(1);
  FixChannels(client_control, base_start, kIPCChannelSize, FIX_PONG_READY);

  char* mem = reinterpret_cast<char*>(client_control);
  SharedMemIPCClient client(mem);

  CrossCallReturn answer;
  uint32 tag1 = 666;
  const wchar_t text[] = L"98765 - 43210";
  std::wstring copied_text;
  CrossCallParamsEx* actual_params;

  CrossCall(client, tag1, text, &answer);
  actual_params = reinterpret_cast<CrossCallParamsEx*>(client.GetBuffer());
  EXPECT_EQ(1, actual_params->GetParamsCount());
  EXPECT_EQ(tag1, actual_params->GetTag());
  EXPECT_TRUE(actual_params->GetParameterStr(0, &copied_text));
  EXPECT_STREQ(text, copied_text.c_str());

  // Check with an empty string.
  uint32 tag2 = 777;
  const wchar_t* null_text = NULL;
  CrossCall(client, tag2, null_text, &answer);
  actual_params = reinterpret_cast<CrossCallParamsEx*>(client.GetBuffer());
  EXPECT_EQ(1, actual_params->GetParamsCount());
  EXPECT_EQ(tag2, actual_params->GetTag());
  size_t param_size = 1;
  ArgType type = INVALID_TYPE;
  void* param_addr = actual_params->GetRawParameter(0, &param_size, &type);
  EXPECT_TRUE(NULL != param_addr);
  EXPECT_EQ(0, param_size);
  EXPECT_EQ(WCHAR_TYPE, type);
  EXPECT_TRUE(actual_params->GetParameterStr(0, &copied_text));

  uint32 tag3 = 888;
  param_size = 1;
  copied_text.clear();

  // Check with an empty string and a non-empty string.
  CrossCall(client, tag3, null_text, text, &answer);
  actual_params = reinterpret_cast<CrossCallParamsEx*>(client.GetBuffer());
  EXPECT_EQ(2, actual_params->GetParamsCount());
  EXPECT_EQ(tag3, actual_params->GetTag());
  type = INVALID_TYPE;
  param_addr = actual_params->GetRawParameter(0, &param_size, &type);
  EXPECT_TRUE(NULL != param_addr);
  EXPECT_EQ(0, param_size);
  EXPECT_EQ(WCHAR_TYPE, type);
  EXPECT_TRUE(actual_params->GetParameterStr(0, &copied_text));
  EXPECT_TRUE(actual_params->GetParameterStr(1, &copied_text));
  EXPECT_STREQ(text, copied_text.c_str());

  param_size = 1;
  std::wstring copied_text_p0, copied_text_p2;

  const wchar_t text2[] = L"AeFG";
  CrossCall(client, tag1, text2, null_text, text, &answer);
  actual_params = reinterpret_cast<CrossCallParamsEx*>(client.GetBuffer());
  EXPECT_EQ(3, actual_params->GetParamsCount());
  EXPECT_EQ(tag1, actual_params->GetTag());
  EXPECT_TRUE(actual_params->GetParameterStr(0, &copied_text_p0));
  EXPECT_STREQ(text2, copied_text_p0.c_str());
  EXPECT_TRUE(actual_params->GetParameterStr(2, &copied_text_p2));
  EXPECT_STREQ(text, copied_text_p2.c_str());
  type = INVALID_TYPE;
  param_addr = actual_params->GetRawParameter(1, &param_size, &type);
  EXPECT_TRUE(NULL != param_addr);
  EXPECT_EQ(0, param_size);
  EXPECT_EQ(WCHAR_TYPE, type);

  CloseChannelEvents(client_control);
  delete[] reinterpret_cast<char*>(client_control);
}

TEST(IPCTest, CrossCallIntPacking) {
  // Check handling for regular 32 bit integers used in Windows.
  size_t base_start = 0;
  IPCControl* client_control =
      MakeChannels(kIPCChannelSize, 4096 * 4, &base_start);
  client_control->server_alive = HANDLE(1);
  FixChannels(client_control, base_start, kIPCChannelSize, FIX_PONG_READY);

  uint32 tag1 = 999;
  uint32 tag2 = 111;
  const wchar_t text[] = L"godzilla";
  CrossCallParamsEx* actual_params;

  char* mem = reinterpret_cast<char*>(client_control);
  SharedMemIPCClient client(mem);

  CrossCallReturn answer;
  DWORD dw = 0xE6578;
  CrossCall(client, tag2, dw, &answer);
  actual_params = reinterpret_cast<CrossCallParamsEx*>(client.GetBuffer());
  EXPECT_EQ(1, actual_params->GetParamsCount());
  EXPECT_EQ(tag2, actual_params->GetTag());
  ArgType type = INVALID_TYPE;
  size_t param_size = 1;
  void* param_addr = actual_params->GetRawParameter(0, &param_size, &type);
  ASSERT_EQ(sizeof(dw), param_size);
  EXPECT_EQ(ULONG_TYPE, type);
  ASSERT_TRUE(NULL != param_addr);
  EXPECT_EQ(0, memcmp(&dw, param_addr, param_size));

  // Check handling for windows HANDLES.
  HANDLE h = HANDLE(0x70000500);
  CrossCall(client, tag1, text, h, &answer);
  actual_params = reinterpret_cast<CrossCallParamsEx*>(client.GetBuffer());
  EXPECT_EQ(2, actual_params->GetParamsCount());
  EXPECT_EQ(tag1, actual_params->GetTag());
  type = INVALID_TYPE;
  param_addr = actual_params->GetRawParameter(1, &param_size, &type);
  ASSERT_EQ(sizeof(h), param_size);
  EXPECT_EQ(VOIDPTR_TYPE, type);
  ASSERT_TRUE(NULL != param_addr);
  EXPECT_EQ(0, memcmp(&h, param_addr, param_size));

  // Check combination of 32 and 64 bits.
  CrossCall(client, tag2, h, dw, h, &answer);
  actual_params = reinterpret_cast<CrossCallParamsEx*>(client.GetBuffer());
  EXPECT_EQ(3, actual_params->GetParamsCount());
  EXPECT_EQ(tag2, actual_params->GetTag());
  type = INVALID_TYPE;
  param_addr = actual_params->GetRawParameter(0, &param_size, &type);
  ASSERT_EQ(sizeof(h), param_size);
  EXPECT_EQ(VOIDPTR_TYPE, type);
  ASSERT_TRUE(NULL != param_addr);
  EXPECT_EQ(0, memcmp(&h, param_addr, param_size));
  type = INVALID_TYPE;
  param_addr = actual_params->GetRawParameter(1, &param_size, &type);
  ASSERT_EQ(sizeof(dw), param_size);
  EXPECT_EQ(ULONG_TYPE, type);
  ASSERT_TRUE(NULL != param_addr);
  EXPECT_EQ(0, memcmp(&dw, param_addr, param_size));
  type = INVALID_TYPE;
  param_addr = actual_params->GetRawParameter(2, &param_size, &type);
  ASSERT_EQ(sizeof(h), param_size);
  EXPECT_EQ(VOIDPTR_TYPE, type);
  ASSERT_TRUE(NULL != param_addr);
  EXPECT_EQ(0, memcmp(&h, param_addr, param_size));

  CloseChannelEvents(client_control);
  delete[] reinterpret_cast<char*>(client_control);
}

TEST(IPCTest, CrossCallValidation) {
  // First a sanity test with a well formed parameter object.
  unsigned long value = 124816;
  const uint32 kTag = 33;
  ActualCallParams<1, 256> params_1(kTag);
  params_1.CopyParamIn(0, &value, sizeof(value), false, ULONG_TYPE);
  void* buffer = const_cast<void*>(params_1.GetBuffer());

  size_t out_size = 0;
  CrossCallParamsEx* ccp = 0;
  ccp = CrossCallParamsEx::CreateFromBuffer(buffer, params_1.GetSize(),
                                            &out_size);
  ASSERT_TRUE(NULL != ccp);
  EXPECT_TRUE(ccp->GetBuffer() != buffer);
  EXPECT_EQ(kTag, ccp->GetTag());
  EXPECT_EQ(1, ccp->GetParamsCount());
  delete[] (reinterpret_cast<char*>(ccp));

#if defined(NDEBUG)
  // Test hat we handle integer overflow on the number of params
  // correctly. We use a test-only ctor for ActualCallParams that
  // allows to create malformed cross-call buffers.
  const int32 kPtrDiffSz = sizeof(ptrdiff_t);
  for (int32 ix = -1; ix != 3; ++ix) {
    uint32 fake_num_params = (kuint32max / kPtrDiffSz) + ix;
    ActualCallParams<1, 256> params_2(kTag, fake_num_params);
    params_2.CopyParamIn(0, &value, sizeof(value), false, ULONG_TYPE);
    buffer = const_cast<void*>(params_2.GetBuffer());

    EXPECT_TRUE(NULL != buffer);
    ccp = CrossCallParamsEx::CreateFromBuffer(buffer, params_2.GetSize(),
                                              &out_size);
    // If the buffer is malformed the return is NULL.
    EXPECT_TRUE(NULL == ccp);
  }
#endif  // defined(NDEBUG)

  ActualCallParams<1, 256> params_3(kTag, 1);
  params_3.CopyParamIn(0, &value, sizeof(value), false, ULONG_TYPE);
  buffer = const_cast<void*>(params_3.GetBuffer());
  EXPECT_TRUE(NULL != buffer);

  size_t correct_size = params_3.OverrideSize(1);
  ccp = CrossCallParamsEx::CreateFromBuffer(buffer, 256, &out_size);
  EXPECT_TRUE(NULL == ccp);

  // The correct_size is 8 bytes aligned.
  params_3.OverrideSize(correct_size - 7);
  ccp = CrossCallParamsEx::CreateFromBuffer(buffer, 256, &out_size);
  EXPECT_TRUE(NULL == ccp);

  params_3.OverrideSize(correct_size);
  ccp = CrossCallParamsEx::CreateFromBuffer(buffer, 256, &out_size);
  EXPECT_TRUE(NULL != ccp);
}

// This structure is passed to the mock server threads to simulate
// the server side IPC so it has the required kernel objects.
struct ServerEvents {
  HANDLE ping;
  HANDLE pong;
  volatile LONG* state;
  HANDLE mutex;
};

// This is the server thread that quicky answers an IPC and exits.
DWORD WINAPI QuickResponseServer(PVOID param) {
  ServerEvents* events = reinterpret_cast<ServerEvents*>(param);
  DWORD wait_result = 0;
  wait_result = ::WaitForSingleObject(events->ping, INFINITE);
  ::InterlockedExchange(events->state, kAckChannel);
  ::SetEvent(events->pong);
  return wait_result;
}

class CrossCallParamsMock : public CrossCallParams {
 public:
  CrossCallParamsMock(uint32 tag, size_t params_count)
      :  CrossCallParams(tag, params_count) {
  }
 private:
  void* params[4];
};

void FakeOkAnswerInChannel(void* channel) {
  CrossCallReturn* answer = reinterpret_cast<CrossCallReturn*>(channel);
  answer->call_outcome = SBOX_ALL_OK;
}

// Create two threads that will quickly answer IPCs; the first one
// using channel 1 (channel 0 is busy) and one using channel 0. No time-out
// should occur.
TEST(IPCTest, ClientFastServer) {
  const size_t channel_size = kIPCChannelSize;
  size_t base_start = 0;
  IPCControl* client_control =
      MakeChannels(channel_size, 4096 * 2, &base_start);
  FixChannels(client_control, base_start, kIPCChannelSize, FIX_PONG_NOT_READY);
  client_control->server_alive = ::CreateMutex(NULL, FALSE, NULL);

  char* mem = reinterpret_cast<char*>(client_control);
  SharedMemIPCClient client(mem);

  ServerEvents events = {0};
  events.ping = client_control->channels[1].ping_event;
  events.pong = client_control->channels[1].pong_event;
  events.state = &client_control->channels[1].state;

  HANDLE t1 = ::CreateThread(NULL, 0, QuickResponseServer, &events, 0, NULL);
  ASSERT_TRUE(NULL != t1);
  ::CloseHandle(t1);

  void* buff0 = client.GetBuffer();
  EXPECT_TRUE(mem + client_control->channels[0].channel_base == buff0);
  EXPECT_EQ(kBusyChannel, client_control->channels[0].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[1].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[2].state);

  void* buff1 = client.GetBuffer();
  EXPECT_TRUE(mem + client_control->channels[1].channel_base == buff1);
  EXPECT_EQ(kBusyChannel, client_control->channels[0].state);
  EXPECT_EQ(kBusyChannel, client_control->channels[1].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[2].state);

  EXPECT_EQ(0, client_control->channels[1].ipc_tag);

  uint32 tag = 7654;
  CrossCallReturn answer;
  CrossCallParamsMock* params1 = new(buff1) CrossCallParamsMock(tag, 1);
  FakeOkAnswerInChannel(buff1);

  ResultCode result = client.DoCall(params1, &answer);
  if (SBOX_ERROR_CHANNEL_ERROR != result)
    client.FreeBuffer(buff1);

  EXPECT_TRUE(SBOX_ALL_OK == result);
  EXPECT_EQ(tag, client_control->channels[1].ipc_tag);
  EXPECT_EQ(kBusyChannel, client_control->channels[0].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[1].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[2].state);

  HANDLE t2 = ::CreateThread(NULL, 0, QuickResponseServer, &events, 0, NULL);
  ASSERT_TRUE(NULL != t2);
  ::CloseHandle(t2);

  client.FreeBuffer(buff0);
  events.ping = client_control->channels[0].ping_event;
  events.pong = client_control->channels[0].pong_event;
  events.state = &client_control->channels[0].state;

  tag = 4567;
  CrossCallParamsMock* params2 = new(buff0) CrossCallParamsMock(tag, 1);
  FakeOkAnswerInChannel(buff0);

  result = client.DoCall(params2, &answer);
  if (SBOX_ERROR_CHANNEL_ERROR != result)
    client.FreeBuffer(buff0);

  EXPECT_TRUE(SBOX_ALL_OK == result);
  EXPECT_EQ(tag, client_control->channels[0].ipc_tag);
  EXPECT_EQ(kFreeChannel, client_control->channels[0].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[1].state);
  EXPECT_EQ(kFreeChannel, client_control->channels[2].state);

  CloseChannelEvents(client_control);
  ::CloseHandle(client_control->server_alive);

  delete[] reinterpret_cast<char*>(client_control);
}

// This is the server thread that very slowly answers an IPC and exits. Note
// that the pong event needs to be signaled twice.
DWORD WINAPI SlowResponseServer(PVOID param) {
  ServerEvents* events = reinterpret_cast<ServerEvents*>(param);
  DWORD wait_result = 0;
  wait_result = ::WaitForSingleObject(events->ping, INFINITE);
  ::Sleep(kIPCWaitTimeOut1 + kIPCWaitTimeOut2 + 200);
  ::InterlockedExchange(events->state, kAckChannel);
  ::SetEvent(events->pong);
  return wait_result;
}

// This thread's job is to keep the mutex locked.
DWORD WINAPI MainServerThread(PVOID param) {
  ServerEvents* events = reinterpret_cast<ServerEvents*>(param);
  DWORD wait_result = 0;
  wait_result = ::WaitForSingleObject(events->mutex, INFINITE);
  Sleep(kIPCWaitTimeOut1 * 20);
  return wait_result;
}

// Creates a server thread that answers the IPC so slow that is guaranteed to
// trigger the time-out code path in the client. A second thread is created
// to hold locked the server_alive mutex: this signals the client that the
// server is not dead and it retries the wait.
TEST(IPCTest, ClientSlowServer) {
  size_t base_start = 0;
  IPCControl* client_control =
      MakeChannels(kIPCChannelSize, 4096*2, &base_start);
  FixChannels(client_control, base_start, kIPCChannelSize, FIX_PONG_NOT_READY);
  client_control->server_alive = ::CreateMutex(NULL, FALSE, NULL);

  char* mem = reinterpret_cast<char*>(client_control);
  SharedMemIPCClient client(mem);

  ServerEvents events = {0};
  events.ping = client_control->channels[0].ping_event;
  events.pong = client_control->channels[0].pong_event;
  events.state = &client_control->channels[0].state;

  HANDLE t1 = ::CreateThread(NULL, 0, SlowResponseServer, &events, 0, NULL);
  ASSERT_TRUE(NULL != t1);
  ::CloseHandle(t1);

  ServerEvents events2 = {0};
  events2.pong = events.pong;
  events2.mutex = client_control->server_alive;

  HANDLE t2 = ::CreateThread(NULL, 0, MainServerThread, &events2, 0, NULL);
  ASSERT_TRUE(NULL != t2);
  ::CloseHandle(t2);

  ::Sleep(1);

  void* buff0 = client.GetBuffer();
  uint32 tag = 4321;
  CrossCallReturn answer;
  CrossCallParamsMock* params1 = new(buff0) CrossCallParamsMock(tag, 1);
  FakeOkAnswerInChannel(buff0);

  ResultCode result = client.DoCall(params1, &answer);
  if (SBOX_ERROR_CHANNEL_ERROR != result)
    client.FreeBuffer(buff0);

  EXPECT_TRUE(SBOX_ALL_OK == result);
  EXPECT_EQ(tag, client_control->channels[0].ipc_tag);
  EXPECT_EQ(kFreeChannel, client_control->channels[0].state);

  CloseChannelEvents(client_control);
  ::CloseHandle(client_control->server_alive);
  delete[] reinterpret_cast<char*>(client_control);
}

// This test-only IPC dispatcher has two handlers with the same signature
// but only CallOneHandler should be used.
class UnitTestIPCDispatcher : public Dispatcher {
 public:
  enum {
    CALL_ONE_TAG = 78,
    CALL_TWO_TAG = 87
  };

  UnitTestIPCDispatcher();
  ~UnitTestIPCDispatcher() {};

  virtual bool SetupService(InterceptionManager* manager, int service) {
    return true;
  }

 private:
  bool CallOneHandler(IPCInfo* ipc, HANDLE p1, DWORD p2) {
    ipc->return_info.extended[0].handle = p1;
    ipc->return_info.extended[1].unsigned_int = p2;
    return true;
  }

  bool CallTwoHandler(IPCInfo* ipc, HANDLE p1, DWORD p2) {
    return true;
  }
};

UnitTestIPCDispatcher::UnitTestIPCDispatcher() {
  static const IPCCall call_one = {
    {CALL_ONE_TAG, VOIDPTR_TYPE, ULONG_TYPE},
    reinterpret_cast<CallbackGeneric>(
        &UnitTestIPCDispatcher::CallOneHandler)
  };
  static const IPCCall call_two = {
    {CALL_TWO_TAG, VOIDPTR_TYPE, ULONG_TYPE},
    reinterpret_cast<CallbackGeneric>(
        &UnitTestIPCDispatcher::CallTwoHandler)
  };
  ipc_calls_.push_back(call_one);
  ipc_calls_.push_back(call_two);
}

// This test does most of the shared memory IPC client-server roundtrip
// and tests the packing, unpacking and call dispatching.
TEST(IPCTest, SharedMemServerTests) {
  size_t base_start = 0;
  IPCControl* client_control =
      MakeChannels(kIPCChannelSize, 4096, &base_start);
  client_control->server_alive = HANDLE(1);
  FixChannels(client_control, base_start, kIPCChannelSize, FIX_PONG_READY);

  char* mem = reinterpret_cast<char*>(client_control);
  SharedMemIPCClient client(mem);

  CrossCallReturn answer;
  HANDLE bar = HANDLE(191919);
  DWORD foo = 6767676;
  CrossCall(client, UnitTestIPCDispatcher::CALL_ONE_TAG, bar, foo, &answer);
  void* buff = client.GetBuffer();
  ASSERT_TRUE(NULL != buff);

  UnitTestIPCDispatcher dispatcher;
  // Since we are directly calling InvokeCallback, most of this structure
  // can be set to NULL.
  sandbox::SharedMemIPCServer::ServerControl srv_control = {
      NULL, NULL, kIPCChannelSize, NULL,
      reinterpret_cast<char*>(client_control),
      NULL, &dispatcher, {0} };

  sandbox::CrossCallReturn call_return = {0};
  EXPECT_TRUE(SharedMemIPCServer::InvokeCallback(&srv_control, buff,
                                                 &call_return));
  EXPECT_EQ(SBOX_ALL_OK, call_return.call_outcome);
  EXPECT_TRUE(bar == call_return.extended[0].handle);
  EXPECT_EQ(foo, call_return.extended[1].unsigned_int);

  CloseChannelEvents(client_control);
  delete[] reinterpret_cast<char*>(client_control);
}

}  // namespace sandbox